现代数字信号处理课后作业【第二章】


Author: Peter
Date:2020-10-15
Location:FZU


文章目录

第二章

2-1 求下列序列z变换及其零、极点

(1) δ ( n − n 0 ) \delta(n-n_0) δ(nn0)

Z T { δ ( n − n 0 ) } = z − n 0 ZT\{\delta(n-n_0)\}=z^{-n_0} ZT{δ(nn0)}=zn0

  • 当n0为正整数时,无零点,极点:z=0
  • 当n0为负整数时,无极点,零点: z=0

(2) 0. 5 n u ( n ) 0.5^nu(n) 0.5nu(n)

Z T { 0. 5 n u ( n ) } = z z − 0.5 ZT\{0.5^nu(n)\}=\dfrac{z}{z-0.5} ZT{0.5nu(n)}=z0.5z

 零点:z=0 极点:z=0.5

  • 零极点图:
    在这里插入图片描述

2-7 已知 X ( z ) = − 3 z − 1 2 − 5 z − 1 + 2 z − 2 , 在 下 列 三 种 收 敛 域 情 况 下 , 求 其 反 变 换 X(z)=\dfrac{-3z^{-1}}{2-5z^{-1}+2z^{-2}},在下列三种收敛域情况下,求其反变换 X(z)=25z1+2z23z1,

(1) ∣ z ∣ > 2 |z|>2 z>2

X ( z ) = − 3 z 2 z 2 − 5 z + 2 X(z)=\dfrac{-3z}{2z^2-5z+2} X(z)=2z25z+23z

           = − 3 z ( 2 z − 1 ) ( z − 2 ) \ \ \ \ \ \ \ \ \ \ =\dfrac{-3z}{(2z-1)(z-2)}           =(2z1)(z2)3z

           = z − 3 ( 2 z − 1 ) ( z − 2 ) \ \ \ \ \ \ \ \ \ \ =z\dfrac{-3}{(2z-1)(z-2)}           =z(2z1)(z2)3

           = z [ A 2 z − 1 + B z − 2 ] \ \ \ \ \ \ \ \ \ \ =z\big[\dfrac{A}{2z-1}+\dfrac{B}{z-2}\big]           =z[2z1A+z2B]

A = − 3 z − 2 ∣ z = 1 2 = 2 A=\dfrac{-3}{z-2} \bigg|_{z=\dfrac{1}{2}}=2 A=z23z=21=2

B = − 3 2 z − 1 ∣ z = 2 = − 1 B=\dfrac{-3}{2z-1} \bigg|_{z=2}=-1 B=2z13z=2=1

X ( z ) = 2 z 2 z − 1 − z z − 2 X(z)=\dfrac{2z}{2z-1}-\dfrac{z}{z-2} X(z)=2z12zz2z

             = z z − 1 2 − z z − 2 \ \ \ \ \ \ \ \ \ \ \ \ =\dfrac{z}{z-\dfrac{1}{2}}-\dfrac{z}{z-2}             =z21zz2z

∣ z ∣ > 2 时 x ( n ) = ( 1 2 ) n u ( n ) − 2 n u ( n ) |z|>2时 x(n)=(\dfrac{1}{2})^nu(n)-2^nu(n) z>2x(n)=(21)nu(n)2nu(n)

(2) ∣ z ∣ < 0.5 |z|<0.5 z<0.5

∣ z ∣ < 0.5 时 x ( n ) = − ( 1 2 ) n u ( − n − 1 ) + 2 n u ( − n − 1 ) |z|<0.5时 x(n)=-(\dfrac{1}{2})^nu(-n-1)+2^nu(-n-1) z<0.5x(n)=(21)nu(n1)+2nu(n1)

(3) 0.5 < ∣ z ∣ < 2 0.5<|z|<2 0.5<z<2

0.5 < ∣ z ∣ < 2 时 x ( n ) = ( 1 2 ) n u ( n ) + 2 n u ( − n − 1 ) 0.5<|z|<2时 x(n)=(\dfrac{1}{2})^nu(n)+2^nu(-n-1) 0.5<z<2x(n)=(21)nu(n)+2nu(n1)

2-8 利用卷积定理求 y ( n ) = x ( n ) ∗ h ( n ) 已 知 y(n)=x(n)*h(n)已知 y(n)=x(n)h(n)

(1) x ( n ) = a n u ( n )          h ( n ) = b n u ( − n ) x(n)=a^nu(n) \ \ \ \ \ \ \ \ h(n)=b^nu(-n) x(n)=anu(n)        h(n)=bnu(n)

X ( z ) = ∑ − ∞ + ∞ x ( n ) z − n = ∑ − ∞ + ∞ a n z − n u ( n ) = ∑ 0 + ∞ ( a z − 1 ) n X(z)=\sum\limits_{-∞}^{+∞}x(n)z^{-n}=\sum\limits_{-∞}^{+∞}a^nz^{-n}u(n)=\sum\limits_{0}^{+∞}(az^{-1})^{n} X(z)=+x(n)zn=+anznu(n)=0+(az1)n

           = 1 1 − a z − 1 = z z − a            ∣ z ∣ > a \ \ \ \ \ \ \ \ \ \ =\dfrac{1}{1-az^{-1}}=\dfrac{z}{z-a} \ \ \ \ \ \ \ \ \ \ |z|>a           =1az11=zaz          z>a

H ( z ) = ∑ − ∞ + ∞ h ( n ) z − n = ∑ − ∞ + ∞ b n z − n u ( − n ) = ∑ − ∞ + ∞ ( z b ) − n u ( − n ) H(z)=\sum\limits_{-∞}^{+∞}h(n)z^{-n}=\sum\limits_{-∞}^{+∞}b^nz^{-n}u(-n)=\sum\limits_{-∞}^{+∞}(\dfrac{z}{b})^{-n}u(-n) H(z)=+h(n)zn=+bnznu(n)=+(bz)nu(n)

           = ∑ + ∞ − ∞ ( z b ) m u ( m ) = 1 1 − z b = − b z − b            ∣ z ∣ < b \ \ \ \ \ \ \ \ \ \ =\sum\limits_{+∞}^{-∞}(\dfrac{z}{b})^{m}u(m)=\dfrac{1}{1-\dfrac{z}{b}}=\dfrac{-b}{z-b} \ \ \ \ \ \ \ \ \ \ |z|<b           =+(bz)mu(m)=1bz1=zbb          z<b

Y ( z ) = X ( z ) H ( z ) = − z b ( z − a ) ( z − b ) Y(z)=X(z)H(z)=-z\dfrac{b}{(z-a)(z-b)} Y(z)=X(z)H(z)=z(za)(zb)b

              = − z [ A z − a + B z − b ] \ \ \ \ \ \ \ \ \ \ \ \ \ =-z\big[\dfrac{A}{z-a}+\dfrac{B}{z-b}\big]              =z[zaA+zbB]

A = b z − b ∣ z = a = b a − b A=\dfrac{b}{z-b} \bigg|_{z=a}=\dfrac{b}{a-b} A=zbbz=a=abb

B = b z − a ∣ z = b = b b − a B=\dfrac{b}{z-a} \bigg|_{z=b}=\dfrac{b}{b-a} B=zabz=b=bab

Y ( z ) = − b a − b ⋅ z z − a − b b − a ⋅ z z − b Y(z)=-\dfrac{b}{a-b}\cdot\dfrac{z}{z-a}-\dfrac{b}{b-a}\cdot\dfrac{z}{z-b} Y(z)=abbzazbabzbz

y ( n ) = − b a − b a n u ( n ) − b a − b b n u ( − n − 1 )         a < ∣ z ∣ < b y(n)=-\dfrac{b}{a-b}a^nu(n)-\dfrac{b}{a-b}b^nu(-n-1) \ \ \ \ \ \ \ a<|z|<b y(n)=abbanu(n)abbbnu(n1)       a<z<b

(2) x ( n ) = a n u ( n )          h ( n ) = δ ( n − 2 ) x(n)=a^nu(n) \ \ \ \ \ \ \ \ h(n)=\delta(n-2) x(n)=anu(n)        h(n)=δ(n2)

Y ( z ) = z z − a ⋅ z − 2 Y(z)=\dfrac{z}{z-a}\cdot z^{-2} Y(z)=zazz2

y ( n ) = a n − 2 u ( n − 2 ) y(n)=a^{n-2}u(n-2) y(n)=an2u(n2)

2-11 用单边z变换求解下列差分方程

(1) y ( n ) − 0.9 y ( n − 1 ) = 0.05 u ( n )       y ( n − 1 ) = 0 y(n)-0.9y(n-1)=0.05u(n) \ \ \ \ \ y(n-1)=0 y(n)0.9y(n1)=0.05u(n)     y(n1)=0

Y ( z ) − 0.9 z − 1 [ Y ( z ) + z y ( − 1 ) ] = 0.05 z z − 1 Y(z)-0.9z^{-1}[Y(z)+zy(-1)]=0.05\dfrac{z}{z-1} Y(z)0.9z1[Y(z)+zy(1)]=0.05z1z

Y ( z ) ( 1 − 0.9 z − 1 ) = 0.05 z z − 1 + 0.9 y ( − 1 ) Y(z)(1-0.9z^{-1})=0.05\dfrac{z}{z-1}+0.9y(-1) Y(z)(10.9z1)=0.05z1z+0.9y(1)

 ∵ y ( n − 1 ) = 0 y(n-1)=0 y(n1)=0   ∴ y ( − 1 ) = 0 y(-1)=0 y(1)=0

Y ( z ) ( 1 − 0.9 z − 1 ) = 0.05 z z − 1 Y(z)(1-0.9z^{-1})=0.05\dfrac{z}{z-1} Y(z)(10.9z1)=0.05z1z

Y ( z ) = 0.05 z z − 1 ⋅ 1 1 − 0.9 z − 1 Y(z)=0.05\dfrac{z}{z-1}\cdot\dfrac{1}{1-0.9z^{-1}} Y(z)=0.05z1z10.9z11

              = 0.05 z z ( z − 1 ) ( z − 0.9 ) = 0.05 z [ A z − 1 + B z − 0.9 ] \ \ \ \ \ \ \ \ \ \ \ \ \ =0.05z\dfrac{z}{(z-1)(z-0.9)}=0.05z\big[\dfrac{A}{z-1}+\dfrac{B}{z-0.9}\big]              =0.05z(z1)(z0.9)z=0.05z[z1A+z0.9B]

              = 0.5 z z − 1 − 0.45 z z − 0.9 \ \ \ \ \ \ \ \ \ \ \ \ \ =\dfrac{0.5z}{z-1}-\dfrac{0.45z}{z-0.9}              =z10.5zz0.90.45z

y ( n ) = [ 0.5 − 0.45 ⋅ ( 0.9 ) n ] u ( n )          ∣ z ∣ > 1 y(n)=[0.5-0.45\cdot(0.9)^n]u(n) \ \ \ \ \ \ \ \ |z|>1 y(n)=[0.50.45(0.9)n]u(n)        z>1

(2) y ( n ) + 5 y ( n − 1 ) = u ( n )        y ( n − 1 ) = 0 y(n)+5y(n-1)=u(n) \ \ \ \ \ \ y(n-1)=0 y(n)+5y(n1)=u(n)      y(n1)=0

Y ( z ) + 5 z − 1 [ Y ( z ) + z y ( − 1 ) ] = z z − 1 Y(z)+5z^{-1}[Y(z)+zy(-1)]=\dfrac{z}{z-1} Y(z)+5z1[Y(z)+zy(1)]=z1z

Y ( z ) [ 1 + 5 z − 1 ] = z z − 1 Y(z)[1+5z^{-1}]=\dfrac{z}{z-1} Y(z)[1+5z1]=z1z

Y ( z ) = z z − 1 ⋅ z z + 5 Y(z)=\dfrac{z}{z-1}\cdot\dfrac{z}{z+5} Y(z)=z1zz+5z

              = z [ z ( z − 1 ) ( z + 5 ) ] \ \ \ \ \ \ \ \ \ \ \ \ \ =z\big[\dfrac{z}{(z-1)(z+5)}\big]              =z[(z1)(z+5)z]

              = z [ A z − 1 + B z + 5 ] \ \ \ \ \ \ \ \ \ \ \ \ \ =z\big[\dfrac{A}{z-1}+\dfrac{B}{z+5}\big]              =z[z1A+z+5B]

A = z z + 5 ∣ z = 1 = 1 6 A=\dfrac{z}{z+5}\bigg|_{z=1}=\dfrac{1}{6} A=z+5zz=1=61

B = z z − 1 ∣ z = − 5 = 5 6 B=\dfrac{z}{z-1}\bigg|_{z=-5}=\dfrac{5}{6} B=z1zz=5=65

Y ( z ) = 1 6 z z − 1 + 5 6 z z + 5 Y(z)=\dfrac{1}{6}\dfrac{z}{z-1}+\dfrac{5}{6}\dfrac{z}{z+5} Y(z)=61z1z+65z+5z

y ( n ) = [ 1 6 + 5 6 ( − 5 ) n ] u ( n )               ∣ z ∣ > 5 y(n)=[\dfrac{1}{6}+\dfrac{5}{6}(-5)^n]u(n) \ \ \ \ \ \ \ \ \ \ \ \ \ |z|>5 y(n)=[61+65(5)n]u(n)             z>5

2-12 已知系统差分方程 y ( n ) + y ( n − 1 ) = n u ( n ) y(n)+y(n-1)=nu(n) y(n)+y(n1)=nu(n)

(1) 求 系 统 函 数 H ( z ) 及 单 位 冲 激 响 应 h ( n ) , 并 说 明 系 统 的 稳 定 性 求系统函数H(z)及单位冲激响应h(n),并说明系统的稳定性 H(z)h(n),

y ( n ) + y ( n − 1 ) = x ( n ) y(n)+y(n-1)=x(n) y(n)+y(n1)=x(n)

Y ( z ) ( 1 + z − 1 ) = X ( z ) Y(z)(1+z^{-1})=X(z) Y(z)(1+z1)=X(z)

H ( z ) = 1 1 + z − 1 = z z + 1 H(z)=\dfrac{1}{1+z^{-1}}=\dfrac{z}{z+1} H(z)=1+z11=z+1z

h ( n ) = ( − 1 ) n u ( n )            ∣ z ∣ > 1 h(n)=(-1)^nu(n) \ \ \ \ \ \ \ \ \ \ |z|>1 h(n)=(1)nu(n)          z>1

极 点 z = − 1 在 单 位 圆 上 , 系 统 不 稳 定 极点z=-1在单位圆上,系统不稳定 z=1

(2) 若 系 统 为 零 状 态 , 如 果 x ( n ) = 10 u u ( n ) , 求 系 统 响 应 若系统为零状态,如果x(n)=10uu(n),求系统响应 x(n)=10uu(n),

y ( n ) + y ( n − 1 ) = 10 u ( n ) y(n)+y(n-1)=10u(n) y(n)+y(n1)=10u(n)

Y ( z ) ( 1 + z − 1 ) = 10 z z − 1 Y(z)(1+z^{-1})=\dfrac{10z}{z-1} Y(z)(1+z1)=z110z

Y ( z ) = 10 z z − 1 ⋅ z z + 1 = z [ 10 z ( z − 1 ) ( z + 1 ) ] Y(z)=\dfrac{10z}{z-1}\cdot\dfrac{z}{z+1}=z\big[\dfrac{10z}{(z-1)(z+1)}\big] Y(z)=z110zz+1z=z[(z1)(z+1)10z]

              = z [ A z − 1 + B z + 1 ] \ \ \ \ \ \ \ \ \ \ \ \ \ =z\big[\dfrac{A}{z-1}+\dfrac{B}{z+1}\big]              =z[z1A+z+1B]

A = 10 z z + 1 ∣ z = 1 = 5 A=\dfrac{10z}{z+1}\bigg|_{z=1}=5 A=z+110zz=1=5

B = 10 z z − 1 ∣ z = − 1 = 5 B=\dfrac{10z}{z-1}\bigg|_{z=-1}=5 B=z110zz=1=5

Y ( z ) = 5 z z − 1 + 5 z z + 1 Y(z)=\dfrac{5z}{z-1}+\dfrac{5z}{z+1} Y(z)=z15z+z+15z

y ( n ) = 5 [ 1 + ( − 1 ) n ] u ( n )            ∣ z ∣ > 1 y(n)=5[1+(-1)^n]u(n) \ \ \ \ \ \ \ \ \ \ |z|>1 y(n)=5[1+(1)n]u(n)          z>1

2-13 已知系统函数 H ( z ) = z z − k H(z)=\dfrac{z}{z-k} H(z)=zkz

(1) 写出对应差分方程

H ( z ) = Y ( z ) X ( z ) = z z − k = 1 1 − k z − 1 H(z)=\dfrac{Y(z)}{X(z)}=\dfrac{z}{z-k}=\dfrac{1}{1-kz^{-1}} H(z)=X(z)Y(z)=zkz=1kz11

Y ( z ) − k z − 1 Y ( z ) = X ( z ) Y(z)-kz^{-1}Y(z)=X(z) Y(z)kz1Y(z)=X(z)

差 分 方 程 为 : y ( n ) − k y ( n − 1 ) = x ( n ) 差分方程为:y(n)-ky(n-1)=x(n) y(n)ky(n1)=x(n)

(2) 画出系统结构图

在这里插入图片描述

(3) 求系统频响,并画出k=0.5,1,0,三种情况下系统的幅度特性和相位特性

H ( e j w ) = H ( z ) ∣ z = e j w = e j w e j w − k = c o s w + j s i n w c o s w − k + j s i n w H(e^{jw})=H(z)\big|_{z=e^{jw}}=\dfrac{e^{jw}}{e^{jw}-k}=\dfrac{cosw+jsinw}{cosw-k+jsinw} H(ejw)=H(z)z=ejw=ejwkejw=coswk+jsinwcosw+jsinw

                  = 1 1 − k c o s w + j s i n w = 1 1 − k c o w − j k s i n w c o s 2 w − j 2 s i n 2 w \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dfrac{1}{1-\dfrac{k}{cosw+jsinw}}=\dfrac{1}{1-\dfrac{kcow-jksinw}{cos^2w-j^2sin^2w}}                  =1cosw+jsinwk1=1cos2wj2sin2wkcowjksinw1

                  = 1 1 − k c o s w + j k s i n w \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dfrac{1}{1-kcosw+jksinw}                  =1kcosw+jksinw1

∣ H ( e j w ) ∣ = 1 ( 1 − k c o s w ) 2 + k 2 s i n 2 w = 1 1 − 2 k c o s w + k 2 |H(e^{jw})|=\dfrac{1}{\sqrt{(1-kcosw)^2+k^2sin^2w}}=\dfrac{1}{\sqrt{1-2kcosw+k^2}} H(ejw)=(1kcosw)2+k2sin2w 1=12kcosw+k2 1

φ ( w ) = − a r c t a n k s i n w 1 − k c o s w \varphi(w)=-arctan\dfrac{ksinw}{1-kcosw} φ(w)=arctan1kcoswksinw

  • k=0.5时,幅频特性图及相频特性图如下:

在这里插入图片描述

  • k=1时,幅频特性图及相频特性图如下:

在这里插入图片描述

  • k=0时,幅频特性图及相频特性图如下:

在这里插入图片描述

  • 7
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值