机器学习
文章平均质量分 50
陈壮
这个作者很懒,什么都没留下…
展开
-
Bottom-up And Top-down
Bottom-up自下而上的处理可以理解为:将感应器结果作为输入,也就是激励。因此自下而上可以被描述为是数据驱动的。例如,在一个人的花园正中有一朵花儿,这个花儿的视觉和所有的激励信息都从视网膜上通过视神经传递到大脑,然后大脑分析后得到图像。这些信息的传递时单方向的。以Region proposals来说, 在Faster-RCNN中 Region proposals是直接通过Selective...原创 2019-10-14 10:45:19 · 510 阅读 · 0 评论 -
卷积
卷积与互相关深度学习中的卷积(单通道版本,多通道版本)3D 卷积1×1 卷积卷积算术转置卷积(去卷积、棋盘效应)扩张卷积可分卷积(空间可分卷积,深度可分卷积)平展卷积分组卷积混洗分组卷积逐点分组卷积一、卷积与互相关在信号处理、图像处理和其它工程/科学领域,卷积都是一种使用广泛的技术。在深度学习领域,卷积神经网络(CNN)这种模型架构就得名于这种技术。但是,深度学习领域...翻译 2019-10-11 21:31:06 · 271 阅读 · 0 评论 -
构建机器学习产品: a problem well-define is a problem half-solved
1.Understand the problem from the perspective of the user原创 2019-09-25 10:22:02 · 459 阅读 · 0 评论 -
图片相似度总结
常用的图像相似度计算1.MSE计算图像矩阵对应像素点的差值之和∑∑(Ides(x,y)−Itest(x,y))2\sum\sum (I_{des}(x,y)- I_{test}(x,y))^2∑∑(Ides(x,y)−Itest(x,y))22.Cos把图像转成一维的矩阵计算余弦相似度3. PSNR4. SSIM5. Perceptual loss等待补充...原创 2019-09-23 15:10:36 · 639 阅读 · 0 评论 -
CenterNet调试记录
CenterNet代码链接torch版本问题,这里不支持1.10的版本.解决办法:1cd CenterNet\src\lib\externalpython setup.py build_ext --inplace2-cd /CenterNet/src/lib/models/networksrm -r DCNv2git clone https://github.com/Char...原创 2019-09-16 21:13:51 · 505 阅读 · 0 评论 -
Matplotlib报错 AttributeError: 'module' object has no attribute 'to_rgba'
遇到问题: AttributeError: ‘module’ object has no attribute ‘to_rgba’解决方案:sudo pip install matplotlib==2.2.0在plt.savefig("./heatmap.png")后面加上plt.close()即可解决....原创 2019-08-22 20:41:09 · 916 阅读 · 0 评论 -
Chinese-OCR
中文场景OCR1.Two stage检测 (Psenet)识别 ( CRNN,CAR–show attend and read)2. One stage同时检测识别原创 2019-08-15 10:33:14 · 1058 阅读 · 2 评论 -
矩阵相关计算中时间复杂度分析
1.矩阵求逆伴随矩阵 A−1=A∗det(A)A^{-1} = \frac{A^{*}}{det(A)}A−1=det(A)A∗ ---- N*O(N!)O(N!)O(N!)+N2∗O((N−1)!)N^{2}*O((N-1)!)N2∗O((N−1)!)矩阵分解 A=LU⟹A−1=U−1A−1A=LU \Longrightarrow A^{-1}=U^{-1}A^{-1}A=...原创 2019-07-25 11:02:02 · 14781 阅读 · 0 评论 -
ML-参数模型与非参数模型的区别
1.模型是否具有固定或可变数量的参数,决定了模型是“参数”模型或“非参”模型。2.对数据分布有没有做假设(下图为引用图片)翻译 2019-07-17 11:15:09 · 327 阅读 · 0 评论 -
LDA主题模型推导
LDA topic model 公式推导:p(w,z∣α,β)=p(w∣z,α,β)∗p(z∣α,β)p(w,z| \alpha,\beta)=p(w|z,\alpha,\beta)*p(z|\alpha,\beta)p(w,z∣α,β)=p(w∣z,α,β)∗p(z∣α,β)β\betaβ与z独立:p(z∣α,β)=p(z∣α)p(z|\alpha,\beta)=p(z|\alpha)p(...原创 2019-07-01 11:36:14 · 622 阅读 · 0 评论 -
数值问题-深度学习-Softmax
数值分析下溢:当接近零的数被四舍五入为零时发生下溢 1/x1/ x1/x。上溢:大量级的数被近似为无穷时发生上溢 exe^{x}ex。Softmax函数-上溢和下溢数值稳定Softmax(xi)=exi∑iexSoftmax(x_i)= \frac {e^{x_i}}{\sum_{i} e^{x}}Softmax(xi)=∑iexexi问题:假设所有的xix_ixi都等于某个常...原创 2019-06-20 20:18:54 · 352 阅读 · 0 评论 -
CSGAN:Task-Aware Compressed Sensing with Generative Adversarial Networks-压缩感知
压缩感知背景:现代信号处理的一个关键基础是 Shannon 采样理论:一个信号可以无失真重建所要求的离散样本数由其带宽决定。但是Shannon 采样定理是一个信号重建的充分非必要条件。也就是信号的压缩和重构的准确率并不是一定依赖与带宽所决定的。定义: 压缩感知理论的核心思想主要包括两点。第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号...原创 2019-05-17 18:24:47 · 1116 阅读 · 1 评论 -
贝叶斯优化BO
超参数的优化问题在深度学习模型中, 网络结构比较复杂,不仅训练参数多,存在参数冗余的现象,此外一些超参数往往需要耗费人力调参。因此如何自动学习超参数以及对网络结构的优化,找到最优的网络结构----贝叶斯优化(BO) 应运而生目标:找到在验证集度量上产生最佳得分的模型超参数。难点:超参数优化的问题在于评估目标函数以找到分数是非常昂贵的。每次我们尝试不同的超参数时,我们必须训练训练数据...原创 2019-05-17 15:32:48 · 613 阅读 · 0 评论 -
机器学习-hands on meachine learning
Supervised learningUnsupervised learningActive learningBatch learningreinforce learningOnline learning原创 2018-09-24 16:18:46 · 396 阅读 · 0 评论 -
机器学习关键字
Overfitting(过拟合)训练误差与测试误差差别很大,即模型的泛型能力比较差,可以通过regularization(简单的可以正则化比如加平方项来使得模型平滑,不会过度去匹配每一个点),同时可以增加数据集来改善(受于实际限制)Underfitting(欠拟合)模型bias比较大,模型较差,可以尝试更复杂一点的模型,加入更多的特征点,也就是增加更多的变量来提高模型的准确率。Gradient De原创 2017-12-12 12:22:05 · 455 阅读 · 0 评论