
令人惊奇的是,风筝与飞镖能够以无限多的方式在平面上贴砖,其中没有一种是规律性的,但其图案可具有高度的对称性,它们本身总是没有重复就终止了。
最值得注意的是,在这些贴砖方式中,任何一种贴砖方式中的有限范围往往是无穷尽地出现在该种特殊贴砖方式中的其他地方,也往往是无穷尽地以每隔一个贴砖的形式出现。马丁·加德纳在《科学美国人》的封面故事人物一文(1977年1月)——彭罗斯面砖爱好者必读——中写道:“要知道这种情况是多么的奇妙,设想一下你生活在一个无限的平面上,它由彭罗斯的无穷无尽的贴砖方式中的一种来镶嵌成花纹状。你可以在不断扩大的面积内,一块一块地检验你所贴好的图案。不管你检查了多少块,总是不能确定你究竟是在哪一块贴砖上。不管你走得多远,或分区划片地检验也无济于事,因为所有这些范围都属于一个大的有限范围,里面所有拼图也都是准确地多次重复。当然,这对任何规律性的棋盘结构来说都是正确的,也是无关紧要的。然而彭罗斯的世界却不是规律性的,在无穷无尽的各种方式中,它们彼此各不相同,而且也只有在不能达到的界限处,才能把一个与另一个区别开来。”
彭罗斯的贴砖方法


彭罗斯的宇宙论的含义也是令人大吃一惊。只要用两种简单的基本组合,或者说原子,就能创造出数量无限的世界。所有的原子世界在任何可想象的有限范围内都显示出惊人的规律性,然而在宇宙范围内则显出独特的不规则性。
出处: http://math.cersp.com/Specialty/Xiaoxue/Subject/200705/4711.html