思路
动态规划O(n^2)
dp 含义当前结尾最长序列 状态转移 max(dp[],dp[0~n-1] + 1) 每次需要循环n次
代码
int len = nums.size();
vector<int> dp(len,1); //dp i 以i结尾的最长子序列长度
dp[0] = 1;
int ret = 1;
for(int i=1;i<nums.size();i++)
{
for(int j=0;j<i;j++)
{
if(nums[i]>nums[j])
{
dp[i] = max(dp[i],dp[j]+1);
ret = max(ret,dp[i]);
}
}
}
return ret;
动态规划+二分搜索O(nlogn) 主要提升第二个循环速度 查找利用二分查找 这里调库lower_bound()
代码
vector<int> dp;
dp.push_back(nums[0]);
for(int i=1;i<nums.size();i++)
{
if(nums[i]>dp.back())
{
dp.push_back(nums[i]);
}else
{
int j = lower_bound(dp.begin(),dp.end(),nums[i]) - dp.begin();
dp[j] = nums[i];
}
}
return dp.size();