最长递归子序列 O(logn) 作业帮 面试题

思路

动态规划O(n^2)

dp 含义当前结尾最长序列 状态转移 max(dp[],dp[0~n-1] + 1)  每次需要循环n次

代码


        int len = nums.size();
        vector<int> dp(len,1); //dp i  以i结尾的最长子序列长度
        dp[0] = 1;
        int ret = 1;
        for(int i=1;i<nums.size();i++)
        {
            for(int j=0;j<i;j++)
            {
                if(nums[i]>nums[j])
                {
                    dp[i] = max(dp[i],dp[j]+1);
                    ret = max(ret,dp[i]);
                }
            }
        }
        return ret;

动态规划+二分搜索O(nlogn) 主要提升第二个循环速度 查找利用二分查找 这里调库lower_bound()

代码

        vector<int> dp;
        dp.push_back(nums[0]);
        for(int i=1;i<nums.size();i++)
        {
            if(nums[i]>dp.back())
            {
                dp.push_back(nums[i]);
            }else
            {
                int j = lower_bound(dp.begin(),dp.end(),nums[i]) - dp.begin();
                dp[j] = nums[i];
            }
        }
        return dp.size();

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页