
神经网络与深度学习
文章平均质量分 84
再一次理清楚神经网络与深度学习的知识点。
喜欢蓝喜欢白
这个作者很懒,什么都没留下…
展开
-
无监督学习(含自编码器在MNIST上的图片重建实战)
含自编码器在MNIST上的图片重建实战原创 2022-03-21 11:21:44 · 1641 阅读 · 1 评论 -
循环神经网络(内含LSTM、GRU实战)
内含LSTM、GRU实战原创 2022-03-21 11:19:16 · 2971 阅读 · 0 评论 -
卷积神经网络(含LeNet-5、AlexNet、BN、VGG、GoogleNet、ResNet实战)
含LeNet-5、AlexNet、BN、VGG、GoogleNet、ResNet实战原创 2022-03-21 11:15:55 · 5107 阅读 · 0 评论 -
tensorflow-Keras高层接口
1. 模型的装配、训练和测试import tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow import kerasfrom tensorflow.keras import Sequential,layersx = tf.constant([1.,2.])# 实例化 一个softmaxsoftmax = keras.layers.Softmax()softmax(x)#直接用不能用,只能先实例化ker原创 2022-03-21 11:10:54 · 1633 阅读 · 0 评论 -
tensorflow2常用语句(实战)
1. 变量与张量介绍 import tensorflow as tftf.__version__# 张量 Tensor 张量其实就是一个多维数组# 张量的维度可以是0 : 1,2,3# dim = 0 : 1,2,3 (一组数)# dim = 1 : [1,2,3] (向量)# dim = 2 : [ [2,3],[4,4] ] (二维矩阵)tf.constant(1.)#无法进行浮点数转整数# tf.Variable(1.,dtype=tf.int32)#但可以整数...原创 2022-03-21 11:08:34 · 1052 阅读 · 0 评论 -
前馈神经网络
1. 神经元与激活函数神经元:下图有d个输入,我们可以认为当d是净输入的时候,d就是神经元的输入,让净输入加权求和并加上偏执项,并最终求和,得到一个输出,将这个输出作为激活函数的输入,其会对加权和再做一次运算最后输出a。这就是一个典型的神经元。激活函数:对于上图右部分即激活函数,其主要作用就是加强网络的表达能力,还有学习能力。我们要求激活函数是:1.连续的,可以允许个别点不可导,但绝大多数都是可导的,并且是非线性的。这样的函数是可...原创 2022-03-21 11:05:43 · 9350 阅读 · 0 评论 -
神经网络基础-线性模型
目录1. 分类介绍2. 线性模型处理分类问题3.二分类问题4. 多分类5. 从概率角度看待分类问题 5.1. 多元线性回归进行分类产生的问题 5.2. 从概率角度解决分类问题6. 交叉熵 6.1. 信息量的数学期望就是熵 6.2. 相对熵7. 逻辑回归(实战)8.softmax 8.1. 理论 8.2. softmax(实战)9. 感知器...原创 2022-03-21 10:58:18 · 1293 阅读 · 0 评论 -
机器学习基础
机器学习的三要素1.1. 模型 首先明确机器学习的主要任务:确定样本空间的输入x和输出y,及x和y之间找到一个f(x,) -> y。 的模型f(x,) ,且尽可能与输出y相匹配。一开始不知道这样的函数是什么样的,所以我们要g根据经验,假设有一个函数集合(f1,f2,f3,f4,f5……,fn),这样的假设函数集合有时候也成为假设空间,我们通过观察,这一系列函数,在训练集中的表现,来选取一个fi在训练集D中最理想,那么fi就是最适合的,或者说是最理想的假设。 我们常说的...原创 2022-03-21 10:49:57 · 1144 阅读 · 0 评论 -
《神经网络与深度学习》基础篇
神经网络与深度学习的总计,不定时更新。原创 2022-01-13 13:54:44 · 3726 阅读 · 2 评论