寻找旋转排序数组中的最小值
题目
已知一个长度为 n
的数组,预先按照升序排列,经由 1
到 n
次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7]
在变化后可能得到:
- 若旋转
4
次,则可以得到[4,5,6,7,0,1,2]
- 若旋转
7
次,则可以得到[0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]]
旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
。
给你一个元素值 互不相同 的数组 nums
,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
思路
本题设计到有序,在有序数组中查找我们一般会考虑二分查找,并且其时间复杂度也是O(log n)
。
对于二分查找来说,我们的目的其实就是要拆分数组,每次将数组区间变小,从而能达到在O(log n)
的复杂度上找到我们需要的元素。
也就是需要每次框住数组。
我们可以根据题意发现,此数组要么是有序的,要么是反转后部分有序的,而且如果翻转了,那么一定是大的元素在前面,小的元素在后面,也就是最小值,在中间。
我们可以看元素的最后一个数,这个数字是比当前的有序部分是大的,但是比前面的部分是小的,类似于
3 4 5 1 2,对于2来说,1小于2,345大于2
每次我们找到中间值,判断中间值和right的大小,如果小于right,说明最小值在mid值之前。
如果大于right的话,说明在mid之后。
code
class Solution {
public int findMin(int[] nums) {
int low = 0;
int high = nums.length-1;
while(low < high){
int mid = (low + high) / 2;
if(nums[mid] < nums[high]){
high = mid;
}else{
low = mid + 1;
}
}
return nums[low];
}
}