python resample() 函数(用于数据聚合)

以下是利用Python进行数据分析中低十章对resample方法具体解释,不过how参数已经过时

 


#把流量数据每3分钟聚合一次
def flowdata_fusion_3(temp_volume_series, temp_time_series):
    # print(temp_volume_series)
    temp_volume_series.index = temp_time_series
    ts = pd.Series(temp_volume_series)
    flowdata_fusion_3min = ts.resample('3min', label='left', closed='left').sum()
    # print(date_fusion_3min)
    return flowdata_fusion_3min

 temp_volume_series代表这检测器获取的数流量,是Series格式,它的默认索引是0~~xx,想把它的索引改为流量对应的时间格式

之前用的是pd.Series(temp_volume_series).reindex(temp_time_series)

或者pd.Series(temp_volume_series,index=temp_time_series),但是结果聚合后,流量值全都变为NAN。这两种方式只是重排,说白了就是重新创建了新的的索引,但是流量数据还在默认的索引中,所以新的流量不存在就用NAN代替。

解决方法:

直接获取它全部的索引值强制改变 temp_volume_series.index = temp_time_series

### 回答1: Python中的resample函数用于对时间序列数据进行重采样的函数。它可以将时间序列数据从一个时间频率转换为另一个时间频率。例如,将每天的数据转换为每周的数据或每月的数据。resample函数可以对数据进行聚合操作,例如求和、平均值、最大值、最小值等。 resample函数的语法如下: ```python DataFrame.resample(rule, axis=, closed=None, label=None, convention='start', kind=None, loffset=None, base=None, on=None, level=None) ``` 其中,参数rule是重采样的规则,可以是字符串、日期偏移量或时间段。axis参数指定要重采样的轴,默认为,即行轴。closed参数指定重采样区间的闭合方式,label参数指定重采样区间的标签方式。convention参数指定重采样区间的起始点或结束点。kind参数指定重采样的方法,例如求和、平均值等。loffset参数指定重采样后的时间偏移量。base参数指定重采样的基准时间。on参数指定要重采样的列名。level参数指定要重采样的层级。 使用resample函数可以方便地对时间序列数据进行重采样和聚合操作,从而得到更高层次的数据分析结果。 ### 回答2: Python中的resample(重采样)函数,是一个用于对时间序列数据进行重新采样的函数。对于时段不同的两个时间序列,如果想要进行比较或合并,就需要对它们进行重采样,统一时段间隔,这样能够更加精准的比较和合并两个时序数据。 resample函数的基本语法为: `DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)` 各个参数含义如下: - rule: 重采样规则字符串或DateOffset对象,规定要重采样的时间间隔。 - how: 降采样时,指定重采样后各时间段内的数值如何计算。通常使用的有sum, mean, std等。 - axis: 轴向,默认为0,即按列进行重采样。 - fill_method: 升采样时,如何用数据填充新增时间戳,例如ffill, bfill等。 - closed: 升采样时,指定新增时间戳的位置关系,例如left, right等。 - label: 升采样时,用于指定新样本的标签位置,以样本的开始或结束为标记。 - convention: start,end,middle是将重采样后的标签设定为每段的开始、结束还是中间。(默认为 start)。 - kind: 重采样方法。一般情况下‘时’或‘周期’。 - loffset: 对重采样后的时间轴标签进行位移 - limit: 限制重采样的结果数量 - on: 对数据集中的某一列进行重采样 - level: 对分层索引的指定层级进行重采样 重采样的方式有两种,一种是升采样,即将低频率的时间序列增加到高频率,如天重采样到小时级别;另一种是降采样,即将高频率的时间序列降低到低频率,如将秒重采样到分钟级别或者小时级别均属于降采样。 总体而言,resample函数Python数据处理当中相当实用,能够迅速处理并分析各类时间序列数据,对于需要对时间类数据进行分析或处理的场合,resample函数将成为你必不可少的工具。 ### 回答3: Python中的resample函数是一种非常常用的信号处理函数,它主要用于信号处理中的重采样操作。所谓重采样,就是在保持原始信号数据的条件下,改变采样率,即对信号进行插值或降采样操作。 resample函数的调用方式如下: ```python scipy.signal.resample(x, num, t=None, axis=0, window=None) ``` 其中,参数解释如下: - x:要重采样的信号; - num:新的结果数组中样本点的数量; - t:可选参数,可以视为重采样之间的时间间隔。默认值为1。如果 t 等于1,则表示信号没有重采样,并且 num 需要大于或等于原始数据中样本点的数量。如果 t 不等于1,则表示重采样,在这种情况下,num 的值可以小于、等于或大于原始数据中样本点的数量。 - axis:可选参数,指定进行重采样的轴,默认值为0。如果给定多个轴,则在每个指定轴上对信号进行重采样;如果给定轴是 None,则沿着数组的第一个轴进行重采样。 - window:可选参数,指定要使用的窗口函数(例如汉明窗)。 resample函数的返回值是一个 NumPy 数组,其形状与原始信号数据的形状相同,但其样本点数量发生了改变。 如果需要对信号进行插值,只需将 num 设置为源数据样本点数量的倍数即可。例如,如果源数据中最初有 100 个样本点,并且希望将信号插值为 300 个样本点,则将 num 设置为 300。 如果希望将信号进行降采样,则需要将 num 设置为小于源数据样本点数量的值。如果要按照 2:1 的比例对信号进行降采样,那么将 num 设置为源数据样本点数量的一半就可以了。 总之,使用 Python 的 resample 函数可以非常方便地进行信号处理中的重采样操作,如插值或降采样。通过合理使用参数,可以实现不同的数据采样要求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值