Leetcode:96.不同的二叉搜索树&&Leetcode:95.不同的二叉搜索树II

133 篇文章 0 订阅

Leetcode:96.不同的二叉搜索树

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

解题思路:

核心思想:卡特兰数列,动态规划(DP)。

f(n)=f(0)*f(n-1)+f(1)*f(n-2)+f(2)*f(n-3)+......+f(n-1)*f(0);

很显然,如果不用数组保存已经算过的值,就要重复计算多次相同的结果,当n非常大时,重复的量也非常多,难免超时。

                                                     

C++代码
class Solution {
 public:
     int numTrees(int n) {
         if (n == 0) return 1;
         if (n == 1) return 1;
         if (data[n] != 0) return data[n];
         int sum = 0;
         for (int i = 1; i <= n; i++) {
             sum += numTrees(i - 1)*numTrees(n - i);
         }
         data[n] = sum;
         return sum;
     }
 private:
     vector<int> data = vector<int>(10000, 0);
 };

Leetcode:95.不同的二叉搜索树II

核心思想:卡特兰数列,递归,动态规划。先按照递归的思想生成n个结点所有形状的树,之后再将1-n按照中序遍历的顺序写入树中。

根据这题,本人编写了如下的关于二叉树的几个功能。

1. 树的复制。复制一个二叉树,形状与root相同,但是重新分配了内存。

TreeNode* copyTree(TreeNode* root);

2. 查找n个结点的树的形状。将他们的根结点储存起来,确保这些树没有共同的结点。

vector<TreeNode*> find(int n);

3. 按照中序遍历的顺序,将1-n写入一个二叉树中。

void In_order(TreeNode* root);

这个代码最快速度为16ms,多次出现,相比8ms,12ms的代码而言,我觉得主要的差距在于,我这个生成树的形状之后,将所有结点赋值为0,最后又要按照中序遍历顺序将1-n赋值到结点中,这里出现了多余的2倍操作,但是按照这个思路不太好一开始将应有的数值赋值,后续仍需改进。

                                  

C++代码
#define hasLChild(x) (!(x->left==NULL))
#define hasRChild(x) (!(x->right==NULL))
class Solution {
 public:
     vector<TreeNode*> generateTrees(int n) {
         if (n <= 0) return{};
         vector<TreeNode*> res = find(n);
         //将中序遍历所有二叉树,将1-n写入树中
         for (int i = 1; i <= int(res.size()); i++) {
             num = 1;
             In_order(res[i - 1]);
         }
         return res;
     }
     void In_order(TreeNode* root) {
         if (hasLChild(root)) In_order(root->left);
         root->val = num; num++;
         if (hasRChild(root)) In_order(root->right);
     }
     vector<TreeNode*> find(int n) {
         if (n == 0) return{ NULL };
         if (n == 1) return{ new TreeNode(0) };
         if (int(dp[n].size()) > 0) return dp[n];
         vector<TreeNode*> res;
         vector<TreeNode*> data1, data2;
         for (int i = 1; i <= n; i++) {
             data1 = find(i - 1);
             data2 = find(n - i);
             for (int j = 1; j <= int(data1.size()); j++) {
                 for (int k = 1; k <= int(data2.size()); k++) {
                     TreeNode* temp = new TreeNode(0);
                     temp->right = copyTree(data1[j - 1]);
                     temp->left = copyTree(data2[k - 1]);
                     res.push_back(temp);
                 }
             }
         }
         dp[n] = res;
         return res;
     }
     TreeNode* copyTree(TreeNode* root) {//将root复制到copy中
         TreeNode* copy;
         if (root == NULL) { copy = NULL; return copy; }
         copy = new TreeNode(0);
         queue<TreeNode*> Qr, Qc;
         TreeNode* tempr,*tempc;
         Qr.push(root); Qc.push(copy);
         while (!Qr.empty()) {
             tempr = Qr.front();
             tempc = Qc.front();
             Qr.pop(); Qc.pop();
             if (hasLChild(tempr)) {
                 tempc->left = new TreeNode(0);
                 Qr.push(tempr->left);
                 Qc.push(tempc->left);
             }
             if (hasRChild(tempr)) {
                 tempc->right = new TreeNode(0);
                 Qr.push(tempr->right);
                 Qc.push(tempc->right);
             }
         }
         return copy;
     }
 private:
     int num = 0;
     vector<TreeNode*> dp[1000];
 };

参考的别人的更优秀的代码,学到了很多,平均用时12ms,如下。

C++代码

class Solution {
public:
    vector<TreeNode*> generateTrees(int n) {
        if(n==0) return vector<TreeNode*>();
        return dfs_genTree(1,n);
        
    }
    
    vector<TreeNode*> dfs_genTree(int b,int e){
        vector<TreeNode*> res;

        if(b>e){
            res.push_back(NULL);
            return res;
        }
        for(int i=b;i<=e;i++){
            vector<TreeNode*> l = dfs_genTree(b,i-1);
            vector<TreeNode*> r = dfs_genTree(i+1,e);
            
            for(auto j:l){
                for(auto k:r){
                    TreeNode* tn = new TreeNode(i);
                    tn->left = j;
                    tn->right = k;
                    res.push_back(tn);
                }
            }
        }
        return res;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值