给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
- 首先找到需要删除的节点;
- 如果找到了,删除它。
说明: 要求算法时间复杂度为 O(h),h 为树的高度。
示例:
root = [5,3,6,2,4,null,7] key = 3 5 / \ 3 6 / \ \ 2 4 7 给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。 一个正确的答案是 [5,4,6,2,null,null,7], 如下图所示。 5 / \ 4 6 / \ 2 7 另一个正确答案是 [5,2,6,null,4,null,7]。 5 / \ 2 6 \ \ 4 7
解题思路:
递归。
- 利用递归查询数值为key的节点,如果没有,原封不动地返回原来地树。
- 找到待删除地点node,node地状态可能有下面几种。
- node没有孩子,那么直接删除这个节点,返回root,如果root,恰好被删除,那么返回null。
- node只有左孩子,将node->left替换node。
- node有两个孩子。找到右子树中最靠左(数值最小)的点去替代node,如果node->right恰好是最左的点,那么,将node的左子树直接嫁接到node->right->left。再将node->right替换node。
- 最终返回root,注意root可能是待删除的点。
class Solution { public: TreeNode* deleteNode(TreeNode* root, int key) { TreeNode* node = find(root, key); if (node == NULL) return root; if (!node->right) { if (!key_father) return node->left; if (key_father->left == node) key_father->left = node->left; else key_father->right = node->left; return root; } if (!node->right->left) { node->right->left = node->left; if (!key_father) return node->right; if (key_father->left == node) key_father->left = node->right; else key_father->right = node->right; return root; } //查找node右子树中最左的点。 TreeNode *left, *left_father; left_father = node->right; left = left_father->left; while (left) { if (left->left) { left_father = left; left = left->left; } else break; } left_father->left = left->right; left->left = node->left; left->right = node->right; if (!key_father) { return left; } if (key_father->left == node) { key_father->left = left; } else { key_father->right = left; } node->left = NULL; node->right = NULL; delete node; return root; } TreeNode* find(TreeNode* root, int key) { if (!root) return NULL; if (root->val == key) return root; if ((root->left)&&root->left->val == key || (root->right)&&root->right->val == key) key_father = root; if (root->val > key) return find(root->left, key); if (root->val < key) return find(root->right, key); } TreeNode* key_father; }; |