Leetcode:904. 水果成篮

133 篇文章 0 订阅

在一排树中,第 i 棵树产生 tree[i] 型的水果。
你可以从你选择的任何树开始,然后重复执行以下步骤:

  1. 把这棵树上的水果放进你的篮子里。如果你做不到,就停下来。
  2. 移动到当前树右侧的下一棵树。如果右边没有树,就停下来。

请注意,在选择一颗树后,你没有任何选择:你必须执行步骤 1,然后执行步骤 2,然后返回步骤 1,然后执行步骤 2,依此类推,直至停止。

你有两个篮子,每个篮子可以携带任何数量的水果,但你希望每个篮子只携带一种类型的水果。
用这个程序你能收集的水果总量是多少?

 

示例 1:

输入:[1,2,1]
输出:3
解释:我们可以收集 [1,2,1]。

示例 2:

输入:[0,1,2,2]
输出:3
解释:我们可以收集 [1,2,2].
如果我们从第一棵树开始,我们将只能收集到 [0, 1]。

示例 3:

输入:[1,2,3,2,2]
输出:4
解释:我们可以收集 [2,3,2,2].
如果我们从第一棵树开始,我们将只能收集到 [1, 2]。

示例 4:

输入:[3,3,3,1,2,1,1,2,3,3,4]
输出:5
解释:我们可以收集 [1,2,1,1,2].
如果我们从第一棵树或第八棵树开始,我们将只能收集到 4 个水果。

解题思路:

动态规划(DP)。首先分析题意,不要被花里胡哨的东西吓到,寻找数学本质,就已经快做出来了。这个问题的数学本质是,求解最长连续子数组的长度,子数组满足仅有两种元素。于是,对于有经验的同学必然会发现,子数组,子序列等问题8成都是动态规划可以解。

假设,dp[i]={v1,v2,v3};是以数组下标i结尾的最长子数组,其中v1是tree[i],v2是除tree[i]之外的另一个元素,v3是最长连续长度。注意v1,v2可能是同一个数。于是很容易发现如下的递推关系:

  1. tree[i+1]==dp[i][0],dp[i+1]={dp[i][0],dp[i][1],dp[i][2]+1};
  2. tree[i+1]==dp[i][0],dp[i+1]={dp[i][1],dp[i][0],dp[i][2]+1};
  3. 其他,元素发生变化,必然是tree[i+1]与tree[i]构成的二元组,长度是tree[i]连续长度len+1。

由此可知,还需要求解tree[i]的最长连续长度len,这个不难。从1,2,3的递推关系可以发现,dp始终只用到前一个元素,因此数组空间可以降维度,最终额外的空间O(1),时间复杂度O(n)。最终需要更多细节请看下面代码:

C++
static const auto io_sync_off = []()
    {
        // turn off sync
        std::ios::sync_with_stdio(false);
        // untie in/out streams
        std::cin.tie(nullptr);
        return nullptr;
    }();
class Solution {
public:
    int totalFruit(vector<int>& tree) {
        int size = tree.size(),i;
        vector<int> dp(3,0);
        dp={tree[0],tree[0],1};
        int _max = 1;
        int len = 1;
        for(i=2;i<=size;i++){
            if(tree[i-1]==dp[0]) {
                dp[2]++;
                len++;
                _max=max(dp[2],_max);
                continue;
            }
            else if(tree[i-1]==dp[1]){
                swap(dp[0],dp[1]);
                dp[2]++;
                _max=max(dp[2],_max);
                len=1;
                continue;
            }
            else {
                dp={tree[i-1],dp[0],1+len};
                _max=max(dp[2],_max);
                len=1;
            }
        }
        return _max;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值