在一排树中,第 i
棵树产生 tree[i]
型的水果。
你可以从你选择的任何树开始,然后重复执行以下步骤:
- 把这棵树上的水果放进你的篮子里。如果你做不到,就停下来。
- 移动到当前树右侧的下一棵树。如果右边没有树,就停下来。
请注意,在选择一颗树后,你没有任何选择:你必须执行步骤 1,然后执行步骤 2,然后返回步骤 1,然后执行步骤 2,依此类推,直至停止。
你有两个篮子,每个篮子可以携带任何数量的水果,但你希望每个篮子只携带一种类型的水果。
用这个程序你能收集的水果总量是多少?
示例 1:
输入:[1,2,1] 输出:3 解释:我们可以收集 [1,2,1]。
示例 2:
输入:[0,1,2,2] 输出:3 解释:我们可以收集 [1,2,2]. 如果我们从第一棵树开始,我们将只能收集到 [0, 1]。
示例 3:
输入:[1,2,3,2,2] 输出:4 解释:我们可以收集 [2,3,2,2]. 如果我们从第一棵树开始,我们将只能收集到 [1, 2]。
示例 4:
输入:[3,3,3,1,2,1,1,2,3,3,4] 输出:5 解释:我们可以收集 [1,2,1,1,2]. 如果我们从第一棵树或第八棵树开始,我们将只能收集到 4 个水果。 解题思路:
动态规划(DP)。首先分析题意,不要被花里胡哨的东西吓到,寻找数学本质,就已经快做出来了。这个问题的数学本质是,求解最长连续子数组的长度,子数组满足仅有两种元素。于是,对于有经验的同学必然会发现,子数组,子序列等问题8成都是动态规划可以解。
假设,dp[i]={v1,v2,v3};是以数组下标i结尾的最长子数组,其中v1是tree[i],v2是除tree[i]之外的另一个元素,v3是最长连续长度。注意v1,v2可能是同一个数。于是很容易发现如下的递推关系:
- tree[i+1]==dp[i][0],dp[i+1]={dp[i][0],dp[i][1],dp[i][2]+1};
- tree[i+1]==dp[i][0],dp[i+1]={dp[i][1],dp[i][0],dp[i][2]+1};
- 其他,元素发生变化,必然是tree[i+1]与tree[i]构成的二元组,长度是tree[i]连续长度len+1。
由此可知,还需要求解tree[i]的最长连续长度len,这个不难。从1,2,3的递推关系可以发现,dp始终只用到前一个元素,因此数组空间可以降维度,最终额外的空间O(1),时间复杂度O(n)。最终需要更多细节请看下面代码:
static const auto io_sync_off = []() { // turn off sync std::ios::sync_with_stdio(false); // untie in/out streams std::cin.tie(nullptr); return nullptr; }(); class Solution { public: int totalFruit(vector<int>& tree) { int size = tree.size(),i; vector<int> dp(3,0); dp={tree[0],tree[0],1}; int _max = 1; int len = 1; for(i=2;i<=size;i++){ if(tree[i-1]==dp[0]) { dp[2]++; len++; _max=max(dp[2],_max); continue; } else if(tree[i-1]==dp[1]){ swap(dp[0],dp[1]); dp[2]++; _max=max(dp[2],_max); len=1; continue; } else { dp={tree[i-1],dp[0],1+len}; _max=max(dp[2],_max); len=1; } } return _max; } }; |