给定一个整数数组 nums
,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数)。
示例 1:
输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:
输入: [-2,0,-1] 输出: 0 解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
#先计算从左到右的相乘的最大值,再计算从右到左的最大值;再将两组最大值相比
class Solution:
def maxProduct(self, nums: List[int]) -> int:
A = nums
B = A[::-1]
for i in range(1, len(A)):
A[i] *= A[i - 1] or 1
B[i] *= B[i - 1] or 1
return max(max(A),max(B))
#python 解法,遍历数组,动态规划计算当前位的最大正数积和最小负数积,然后与当前元素比较。因为#最大积可以使正数相乘也可以是两个负数相乘
class Solution:
def maxProduct(self, nums: List[int]) -> int:
if len(nums) == 1: return nums[0]
pos_max, neg_max = 0, 0
res = nums[0]
for x in nums:
curp = pos_max # 避免pos_max被修改,先存起来
pos_max = max(x, max(x*pos_max, x*neg_max))
neg_max = min(x, min(x*curp, x*neg_max))
res = max(pos_max, res)
return res
动态规划有点没有看懂。。。哎