#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<string>
#include<iostream>
using namespace std;
const int maxn=5000;
int n;
int d[maxn][2],f[maxn][2];//这种简单的二维机构,设计0代表当前u的结点不选入,而1代表当前的u的结点选入
vector<int> sons[maxn];
map<string,int> v;//利用map对应的关系,快速有效的将人名转换成数字,方便处理。
void DP(int u)
{
if(sons[u].size()==0)
{
d[u][0]=0;
d[u][1]=1;
return ;
}
int nsize=sons[u].size();
for(int i=0;i<nsize;i++)
{
DP(sons[u][i]);
if(!f[sons[u][i]][0])
f[u][1]=0;
d[u][1]+=d[sons[u][i]][0];
if(d[sons[u][i]][0]>d[sons[u][i]][1])
{
d[u][0]+=d[sons[u][i]][0];
if(!f[sons[u][i]][0])
f[u][0]=0;
}
else
{
d[u][0]+=d[sons[u][i]][1];
if(!f[sons[u][i]][1]||(d[sons[u][i]][1]==d[sons[u][i]][0]))
f[u][0]=0;
}
}
d[u][1]++;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n==0)
break;
for(int i=1;i<=n;i++)
{
sons[i].clear();
}
v.clear();
memset(d,0,sizeof(d));
memset(f,1,sizeof(f));
string s1,s2;
int top=1;
cin>>s1;
v[s1]=top++;
for(int i=1;i<n;i++)
{
cin>>s1>>s2;
if(!v[s1])
v[s1]=top++;
if(!v[s2])
v[s2]=top++;
sons[v[s2]].push_back(v[s1]);
}
DP(1);
if(d[1][1]==d[1][0])
printf("%d No\n",d[1][1]);
else if(d[1][1]>d[1][0])
printf("%d %s\n",d[1][1],f[1][1]?"Yes":"No");
else
printf("%d %s\n",d[1][0],f[1][0]?"Yes":"No");
}
return 0;
}//<span style="font-size:24px;color:#663366;">这个题目就是树的DP问题里的最大独立子集问题,然后附加上了还需要判断唯一性,解法主要难点就是在DP状态方程的设立,有了好的模型建立编起来其实不算太难,这个</span>
<span style="font-size:24px;color:#663366;">二维数组利用01状态来区分当前u的这个结点是否入选,想法还是十分新颖的,学习了很多,还有这个题让我收获很大的就是map和vector的学习使用了。</span>