题意
n个人,第一个人为老板,剩下n-1行,第一个字符串为员工名称,第二个字符串为上级名称。当选择上级的时候便不能再选择下级,求最多能选多少人,以及选择方案是否唯一。
题解
树的最大独立集问题。设d[u][0]为以u为根的子树,若不选择员工u可得到的最大人数,f[u][0]为方案唯一性,0代表不唯一,1代表唯一。d[u][1]为选择员工u可得到的最大人数,f[u][1]同理。由此可得两套状态转移方程,d[u][1]=sum(d[v][0])(v为u的子节点),当且仅当所有f[v][0]=1时,f[u][1]=1。d[u][0]=sum(max(d[v][0],d[v][1])),d[v][0]==d[v][1]时,f[u][0]=0,max值对应的方案不唯一时,f[u][0]=0。
注意事项
注意有的样例上级没有在员工那一列出现过就被使用,因此在输入处理的时候,需要一个整数num,当上级没有出现过的时候,num++,并记录上级名称。
代码
#include <iostream>
#include<vector>
#include<algorithm>
#include<map>
#include<cstdio>
#include<cstring>
using namespace std;
map<string,int> mp;
vector<int> vt[210];
int dp[210][2];
int f[210][2];
void dfs(int u){
if(vt[u].empty()){
dp[u][0]=0;
dp[u][1]=1;
return ;
}
//printf("%d %d ",u,vt[u].size());
int k=vt[u].size();
for(int i=0;i<k;i++){
//printf("vt[u][i]:%d ",vt[u][i]);
dfs(vt[u][i]);
if(f[vt[u][i]][0]==0){
f[u][1]=0;
}
dp[u][1]+=dp[vt[u][i]][0];
if(dp[vt[u][i]][1]>dp[vt[u][i]][0]){
dp[u][0]+=dp[vt[u][i]][1];
if(f[vt[u][i]][1]==0){
f[u][0]=0;
}
}else{
dp[u][0]+=dp[vt[u][i]][0];
if(dp[vt[u][i]][1]==dp[vt[u][i]][0]){
f[u][0]=0;
}else if(f[vt[u][i]][0]==0){
f[u][0]=0;
}
}
}
dp[u][1]++;
}
int main()
{
//freopen("d://input.txt","r",stdin);
//freopen("d://output.txt","w",stdout);
int n;
while(scanf("%d",&n)){
if(n==0)
break;
mp.clear();
memset(dp,0,sizeof(dp));
memset(vt,0,sizeof(vt));
for(int i=0;i<=n;i++){
f[i][0]=1;
f[i][1]=1;
}
string str,son;
cin>>str;
int num=1;
mp[str]=num++;
for(int i=1;i<n;i++){
cin>>son;
if(!mp[son]){
mp[son]=num++;
}
cin>>str;
if(!mp[str]){
mp[str]=num++;
}
vt[mp[str]].push_back(mp[son]);
}
dfs(1);
if(dp[1][1]>dp[1][0]){
printf("%d ",dp[1][1]);
if(f[1][1]){
printf("Yes\n");
}else{
printf("No\n");
}
}else if(dp[1][1]==dp[1][0]){
printf("%d No\n",dp[1][1]);
}else{
printf("%d ",dp[1][0]);
if(f[1][0]){
printf("Yes\n");
}else{
printf("No\n");
}
}
}
return 0;
}