就把做过的题全贴上来把!大概有9题左右?
P2197 【模板】nim 游戏
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+10;
const int M = 1e4+10;
const int mod = 19260817;
#define int long long
#define endl '\n'
#define Endl '\n'
#define inf 0x3f3f3f3f3f3f3f3f
#define fast ios::sync_with_stdio(false);cin.tie(nullptr);
signed main(){
fast
int t;cin>>t;
while(t--){
int n,sum=0;cin>>n;
while(n--){int x;cin>>x;sum^=x;}
if(sum)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0^0;
}
P2613 【模板】有理数取余
感觉一眼乘法逆元+快速幂 因为m是个质数 可是还是学了一下证明
#include <bits/stdc++.h>
using namespace std;
const int N = 1e8+10;
const int M = 1e4+10;
const int mod = 19260817;
#define int long long
#define endl '\n'
#define Endl '\n'
#define inf 0x3f3f3f3f3f3f3f3f
#define fast ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
void read(long long &x){
int f=1;x=0;char s=getchar();
while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
while(s<='9'&&s>='0'){x=x*10%mod+(s-'0')%mod;s=getchar();}
x=x%mod*f;
}
int qmi(int a,int k, int p){
int res=1;
while(k){
if(k&1)res=res*a%p;
a=a*a%p;
k>>=1;
}
return res;
}
signed main(){
fast
int a,b;
read(a), read(b);
if(!b)cout<<"Angry!"<<Endl;
else cout<<a*qmi(b,mod-2,mod)%mod<<endl;
return 0^0;
}
P4549 【模板】裴蜀定理
#include <bits/stdc++.h>
using namespace std;
const int N = 1e8+10;
const int M = 1e4+10;
const int mod = 1e9+7;
#define int long long
#define endl '\n'
#define Endl '\n'
#define inf 0x3f3f3f3f3f3f3f3f
#define fast ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
int gcd(int a,int b){return b?gcd(b,a%b):a;}
signed main(){
fast
int n;cin>>n;
int a[22];
for(int i=0;i<n;i++)cin>>a[i];
int t=0;
for(int i=0;i<n;i++){
t=gcd(a[i],t);
}
cout<<abs(t)<<endl;
return 0^0;
}
P3383 【模板】线性筛素数
#include <bits/stdc++.h>
using namespace std;
const int N = 1e8+10;
const int M = 1e4+10;
const int mod = 1e9+7;
#define int long long
#define endl '\n'
#define Endl '\n'
#define inf 0x3f3f3f3f3f3f3f3f
#define fast ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
int prime[N];
bool st[N];
signed main(){
fast
int n,m,cnt=1;cin>>n>>m;
for(int i=2;i<=n;i++){
if(!st[i])prime[cnt++]=i;
for(int j=1;prime[j]<=n/i;j++){
st[i*prime[j]]=true;
if(i%prime[j]==0)break;
}
}
while(m--){
int x;cin>>x;
cout<<prime[x]<<endl;
}
return 0^0;
}
892. 台阶-Nim游戏
筛单数^
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;cin>>n;
int flag=0;
for(int i=1;i<=n;i++){
int x;cin>>x;
if(i%2)flag^=x;
}
if(flag)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return 0;
}
893. 集合-Nim游戏
sg图+记忆化搜索
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+10;
const int M = 1e4+10;
const int mod = 19260817;
#define int long long
#define endl '\n'
#define Endl '\n'
#define inf 0x3f3f3f3f3f3f3f3f
#define fast ios::sync_with_stdio(false);cin.tie(nullptr);
int s[N],f[N],n,m;
int sg(int x){
if(f[x]!=-1)return f[x];
set<int>S;
for(int i=1;i<=m;i++)if(x>=s[i])S.insert(sg(x-s[i]));
for(int i=0;;i++)if(!S.count(i))return f[x]=i;
}
signed main(){
fast
cin>>m;
for(int i=1;i<=m;i++)cin>>s[i];
cin>>n;
int ans=0;
memset(f,-1,sizeof f);
for(int i=1;i<=n;i++){
int x;cin>>x;
ans^=sg(x);
}
if(ans)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return 0^0;
}
894. 拆分-Nim游戏
sg图+记忆化搜索
#include<bits/stdc++.h>
using namespace std;
const int N =110;
int f[N];
int sg(int x){
if(f[x]!=-1)return f[x];
set<int>s;
for(int i=0;i<x;i++){
for(int j=0;j<=i;j++){
s.insert(sg(i)^sg(j));
}
}
for(int i=0;;i++){
if(s.count(i)==0)return f[x]=i;
}
}
int main(){
int n;cin>>n;
int ans=0;
memset(f,-1,sizeof f);
for(int i=0;i<n;i++){
int x;cin>>x;
ans^=sg(x);
}
if(ans)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return 0;
}
890. 能被整除的数
容斥但是通过位运算+spj 就是t>n时 就不能算进去了
#include <bits/stdc++.h>
using namespace std;
const int N = 1e8+10;
const int M = 1e4+10;
const int mod = 19260817;
#define int long long
#define endl '\n'
#define Endl '\n'
#define inf 0x3f3f3f3f3f3f3f3f
#define fast ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
signed main(){
fast
int n,m,a[20];cin>>n>>m;
for(int i=0;i<m;i++)cin>>a[i];
int ans=0;
for(int i=1;i<1<<m;i++){
int t=1,cnt=0;
for(int j=m-1;j>=0;j--){
if(i>>j&1){
if((long long)t*a[j]>n){
t=-1;
break;
}
t*=a[j];
cnt++;
}
}
if(t!=-1){
if(cnt%2)ans+=n/t;
else ans-=n/t;
}
}
cout<<ans<<endl;
return 0^0;
}
P5656 【模板】二元一次不定方程 (exgcd)
重点来证明一下这道题啊!
首先 ax+by=c;
要是有解肯定是(a,b)|c
第一个问题解除 所以我们可以再exgcd的时候 求出 (a,b)的同时 求出 一组x,y的特解
当我们有这一组特解的同时 我们知道
ax+by=c;
可以变形为
a(x+db)+b(y-da)=c;
显然成立
而db和da要为整数 那么d|a,d|b 那么d=(a,b)
最后我们知道当x增大时 y减小
所以我们求两组边界情况即可!