君不见~
码龄10年
关注
提问 私信
  • 博客:91,363
    91,363
    总访问量
  • 35
    原创
  • 31,433
    排名
  • 323
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广西
  • 加入CSDN时间: 2014-11-23
博客简介:

qq_23865133的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    526
    当月
    10
个人成就
  • 获得335次点赞
  • 内容获得85次评论
  • 获得673次收藏
  • 代码片获得2,148次分享
创作历程
  • 35篇
    2024年
成就勋章
TA的专栏
  • 目标检测
    5篇
  • 深度学习基础
    18篇
  • 大疆TSDK
    2篇
  • YOLO + SAM
    2篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

attributeerror: ‘FreeTypeFont‘ object has no attribute ‘getsize‘问题

我在训练yolov9的时候报错:attributeerror: ‘FreeTypeFont‘ object has no attribute ‘getsize‘。如果不想降级,仍然使用pillow10解决这个报错,可以使用getbbox方法,返回值和getsize方法是一样的。字体的原因,其实真实问题出现yolo版本安装的Pillow库更新后,getsize()方法已经抛弃使用了。意思是getsize方法将在pillow10中被getbbox或getlength代替。再去执行,可以成功运行,但是有个警告。
原创
发布博客 2024.11.06 ·
221 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

基于windows10的WSL详细安装与使用教程

WSL(Windows Subsyetem for Linux,适用于 Linux 的 Windows 子系统),是 Microsoft 公司于 2016 年在 Windows 10 平台发布的一项功能,其使得用户可以在 Windows 操作系统上运行 ELF 格式的 Linux 可执行文件。WSL 目前已发布两代产品:WSL 1 和 WSL 2。WSL 1 实现了 Linux 兼容层,将 Linux 系统调用转换为 Windows NT 系统调用;
原创
发布博客 2024.10.19 ·
1350 阅读 ·
7 点赞 ·
0 评论 ·
21 收藏

在WSL2中删除文件后,磁盘空间未释放怎么办

不同于 WSL1,WSL2 本质上是虚拟机,所以 Windows 会自动创建 vhdx 后缀的虚拟磁盘文件作为存储。我在WSL中删掉了一些文件,但是磁盘剩余空间并没有增加,于是去搜索了相关内容,找到了原因和解决办法。这个 vhdx 后缀的虚拟磁盘文件特点是可以自动扩容,但是一般不会自动缩容。一旦有很多文件把它“撑大”,即使把这些文件删除它也不会自动“缩小”如果默认WSL安装在C盘,那么Linux 发行版的。2.第一步,找到并确定要压缩的虚拟磁盘文件。文件一般都会在下面的路径中。盘的存储空间得到了释放。
原创
发布博客 2024.08.28 ·
604 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

使用SAM(Segment Anything Model)模型中的SamAutomaticMaskGenerator一键分割图片中所有对象并保存所有分割后的目标对象

下面将介绍使用SAM(Segment Anything Model)模型中的SamAutomaticMaskGenerator一键分割图片中所有对象并保存所有分割后的目标对象,包括保存图像完整的mask和图像中各个mask。也可以通过调整SamAutomaticMaskGenerator函数中的相关参数,以得到不同尺度的分割结果,下面是SamAutomaticMaskGenerator()函数的参数默认值。
原创
发布博客 2024.07.18 ·
217 阅读 ·
6 点赞 ·
0 评论 ·
1 收藏

使用SAM(Segment Anything Model)模型做图像分割,包括单个、多个提示点进行目标分割

最近需要做YOLO + SAM的工作,先是实现了YOLOV8 OBB + SAM模型的级联,即在使用旋转目标检测模型YOLOV8 OBB对图像推理得到检测框之后分别计算检测框内部的单个和多个坐标点,在SAM模型中分别使用单个和多个提示点对目标进行分割(也可以对旋转检测框内的目标进行分割)
原创
发布博客 2024.07.17 ·
624 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

使用目标检测模型YOLO V10 OBB进行旋转目标的检测:训练自己的数据集(基于卫星和无人机的农业大棚数据集)

这个是在YOLO V10源码的基础上实现的。我只是在源码的基础上做了些许的改动。因为YOLOv10是是在Ultralytics的基础上开发而来,所有可以轻松地按照V8 OBB中的代码来修改。修改一个yaml文件和一个脚本脚本代码就可以实现YOLO V10 OBB
原创
发布博客 2024.07.02 ·
1854 阅读 ·
6 点赞 ·
14 评论 ·
9 收藏

目标检测模型YOLO V9 OBB

发布资源 2024.06.04 ·
rar

使用目标检测模型YOLO V9 OBB进行旋转目标的检测:训练自己的数据集(基于卫星和无人机的农业大棚数据集)二

在网上看到别人在YOLO V9 源码上实现了旋转目标检测,但是我在按照他的方法进行训练的时候出现了错误提示,问题弄了很久都没有解决。运行训练脚本train_dual.py提示如下。loss_tal_dual.py中的报错代码。运行训练脚本train.py提示如下。loss_tal.py中的报错代码。
原创
发布博客 2024.06.04 ·
629 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

使用目标检测模型YOLO V9 OBB进行旋转目标的检测:训练自己的数据集(基于卫星和无人机的农业大棚数据集)

我看到YOLO V8中(ultralytics版本8.2.18)集成了YOLO V9,所以直接在YOLO V8 OBB的基础上实现YOLO V9 OBB,训练结果也出来了,但是评估指标比YOLO V8 OBB低一点点。之前不知道是因为什么原因,现在原因查明了,是因为训练的v9 OBB只有主分支,没有辅助分支,所以精度较低。还有另一个原因可能是没有预训练权重,如果先在DOTA数据集上进行预训练,再使用预训练权重训练v9 OBB,精度可能还可以再提一点。
原创
发布博客 2024.05.28 ·
892 阅读 ·
2 点赞 ·
5 评论 ·
3 收藏

[保姆式教程]使用目标检测模型YOLO V8 OBB进行旋转目标的检测:训练自己的数据集(基于卫星和无人机的农业大棚数据集)

最近需要做基于卫星和无人机的农业大棚的旋转目标检测,基于YOLO V8 OBB的原因是因为尝试的第二个模型就是YOLO V8,后面会基于YOLO V9模型做农业大棚的旋转目标检测。YOLO V9目前还不能进行旋转目标的检测,需要修改代码PS:欢迎大家分享农业大棚数据集,数据制作太花时间了......下面是我制作的农业大棚图像。
原创
发布博客 2024.05.20 ·
6356 阅读 ·
22 点赞 ·
13 评论 ·
93 收藏

[保姆式教程]使用目标检测模型YOLO V5 OBB进行旋转目标的检测:训练自己的数据集(基于卫星和无人机的农业大棚数据集)

最近需要做基于卫星和无人机的农业大棚的旋转目标检测,基于YOLO V5 OBB的原因是因为尝试的第一个模型就是YOLO V5,后面会基于其他YOLO系列模型做农业大棚的旋转目标检测,尤其是YOLO V9,YOLO V9目前还不能进行旋转目标的检测,需要修改代码。
原创
发布博客 2024.05.17 ·
1634 阅读 ·
26 点赞 ·
6 评论 ·
30 收藏

详解NDVI(归一化差异植被指数)图像

因为NDVI图像是从特定的光谱数据计算而来的,通常表现为单通道图像,其值范围在-1到1之间。但是在实际应用中,为了更好的可视化,NDVI图像常常被映射到彩色空间(如伪彩色),这时可能会用到多个通道来展示不同的植被密度。总的来说,NDVI图像是一个强大的工具,适用于监测和分析地球表面的植被状态。较低的正值或负值表示较少的或无植被。NDVI是通过分析在不同光谱波段(通常是红光和近红外)反射的光来衡量植被的生长情况和密度。3. 时间动态监测:通过比较不同时间的NDVI图像,可以监测植被覆盖和健康状况的变化。
原创
发布博客 2024.03.15 ·
11434 阅读 ·
13 点赞 ·
0 评论 ·
34 收藏

详解灰度图像和二值图像

灰度图像是一种特殊的图像,其在表示时不涉及彩色信息,而是仅通过灰度来表示图像中的明暗变化。这种图像的每个像素值仅包含了亮度信息,而没有颜色信息。灰度值通常是从0(黑色)到255(白色)的整数,介于这两者之间的值代表了不同的灰度级别,其中较小的数值表示较暗的区域,较大的数值表示较亮的区域。灰度图像1. 数据简化:由于仅包含灰度信息,灰度图像的数据量比彩色图像小,处理起来更为简单高效。2. 易于处理:许多图像处理技术,如边缘检测、图像分割等,在灰度图像上的实现更为直接和简单。
原创
发布博客 2024.03.12 ·
1659 阅读 ·
5 点赞 ·
0 评论 ·
13 收藏

详解常见图像颜色空间(RGB、CMYK、HSV、HSL、YCbCr、CIE XYZ和CIE Lab)和图像阈值方法(全局阈值处理、自适应阈值处理和Otsu方法)

这是一种自动确定阈值的方法,特别适合于图像的灰度级分布较为集中的情况。Otsu方法是一种普遍使用的全局阈值方法,因为它不需要预先设置阈值,适用于自动化的图像处理任务。图像阈值是一种基于像素值将图像从灰度转换为二值(黑白)的简单而有效的分割技术,通常用于图像分割和边缘检测。: 这是电子显示设备中最常见的颜色空间,基于光的三原色:红色、绿色和蓝色。: 这是印刷行业常用的颜色空间,它基于颜料的混合原理,其中黑色(Key)通常用于增加深度和细节。图像颜色空间是用于表示颜色的方法。:在整个图像上应用单一阈值。
原创
发布博客 2024.03.11 ·
1576 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

详解深度学习中编码器(Encoder)和解码器(Decoder)层

在深度学习中,编码器(Encoder)和解码器(Decoder)层是构成序列到序列(Seq2Seq)模型的两个主要组件,广泛应用于自然语言处理(NLP)任务中,如机器翻译、文本摘要、问答系统等。这些层的设计使得模型能够处理输入序列并产生相应的输出序列,即从一个域(如源语言文本)到另一个域(如目标语言文本)的转换。
原创
发布博客 2024.03.06 ·
10808 阅读 ·
11 点赞 ·
0 评论 ·
40 收藏

详解深度学习中自注意力机制、多头注意力、位置编码、编码器和解码器层以及前馈神经网络

自注意力(Self-Attention),也称为内部注意力,是一种注意力机制,使模型能够在序列内部加权并关注到不同位置的信息。这允许模型捕捉序列内的上下文关系,例如,在处理一个句子时,模型可以学会将“它”与句子中的正确名词关联起来。自注意力机制通过计算序列中每个元素对其他所有元素的注意力分数来工作,这些分数决定了在生成每个元素的表示时应该给予序列中其他元素多少权重特点全局依赖建模: 能够捕获长距离依赖,不受序列长度限制并行计算: 相比于RNN的序列化处理,自注意力可以并行处理所有元素,提高计算效率。
原创
发布博客 2024.03.06 ·
2136 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

详解深度学习之Transformer

Transformer模型是由Vaswani等人在2017年提出的,它是第一个完全基于注意力机制的模型,用于处理序列到序列的任务,比如文本翻译。它在处理序列数据时,相比于之前的模型如循环神经网络(RNN)和长短期记忆网络(LSTM),展现了更高的效率和性能。其创新之处在于使用了自注意力机制(Self-Attention),能够在处理序列数据时更高效地捕获远距离依赖关系,这使得它在并行化处理方面有着显著的优势。Transformer模型包括两大部分:编码器(Encoder)和解码器(Decoder)
原创
发布博客 2024.03.06 ·
498 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

详解深度学习中模型的权重和偏置

权重和偏置是神经网络的核心参数,决定了模型如何从数据中学习。它们在训练过程中通过反向传播和梯度下降算法更新,以优化模型的性能。训练完成后,这些参数会被保存在权重文件中,以便模型的后续使用或部署。这些过程确保了深度学习模型可以学习复杂的数据表示,并在多种任务中实现高效的预测。
原创
发布博客 2024.03.06 ·
3577 阅读 ·
11 点赞 ·
0 评论 ·
26 收藏

详解深度学习中前向传播和反向传播两个核心过程

前向传播和反向传播共同构成了神经网络训练的基础。前向传播负责根据当前参数生成预测,而反向传播则负责根据这些预测和实际结果之间的差异来更新网络的参数,从而让网络学习到数据中的模式和结构。这两个过程使得深度学习模型能够在复杂的任务中表现出卓越的性能,无论是在视觉识别、语言处理还是其他领域。
原创
发布博客 2024.03.05 ·
628 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

详解深度学习中模型提取的特征图在模型中传递的形式(第3种解释)

在深度学习中,图像分割和分类任务通常依赖于一个称为“backbone”的卷积神经网络(CNN)来提取图像的特征。这些特征图(Feature Maps)是通过卷积层、激活层、池化层等一系列层次的处理过程在网络中以张量(Tensor)的形式传递的。
原创
发布博客 2024.03.05 ·
490 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏
加载更多