深度神经网络基础

课程信息:网易微专业:《深度学习和神经网络》
课程来源:https://mooc.study.163.com/course/2001281002

假设有以下一张图片,要判断其输出是否为猫,若是,则可以用 y = 1 y = 1 y=1表示,否则用 y = 0 y = 0 y=0表示:

计算机保存一张图片通常使用3个独立矩阵,分别对应红、绿、蓝三个颜色通道。如果输入像素是64×64,则会有3个64×64的矩阵,即输入是一个3×64×64的高维度数据,而输出是 y = 0   o r   1 y=0 \ or\ 1 y=0 or 1

机器学习之单变量线性回归一样,可以用 ( x , y ) (x,y) (x,y)表示一个训练样本,其中 x ∈ R n x \in R^n xRn,而 y = { 0 , 1 } y = \{0,1\} y={0,1},通常用 { ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) … … ( x ( m ) , y ( m ) ) } \{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)})……(x^{(m)},y^{(m)}) \} {(x(1),y(1)),(x(2),y(2))(x(m),y(m))}表示整个训练集,其中 m m m表示训练样本的大小,以上,由 m m m个训练样本可以组成输入矩阵 X X X,且 X ∈ R n × m X \in R^{n×m} XRn×m Y Y Y是一个输出矩阵,且 Y ∈ R 1 × m Y \in R^{1×m} YR1×m

逻辑回归

对于以上分类问题,给定输入 x x x,我们想知道 y y y的输出概率, y ^ \hat{y} y^的输出概率代表着该分类问题的结果, y ^ \hat{y} y^的值表示是猫的概率可以简单表示为 y ^ = p { y = 1 ∣ x } \hat{y} = p\{y=1|x\} y^=p{y=1x},且 0 ≤ y ^ ≤ 1 0 \le \hat{y} \le 1 0y^1

对于线性回归,有 y = w T x + b y = w^Tx+b y=wTx+b,而对于逻辑回归,采用激活函数,即:
y = δ ( w T x + b ) y = \delta(w^Tx+b) y=δ(wTx+b) 表示,令 z = w T x + b z = w^Tx+b z=wTx+b,则:

δ ( z ) = 1 1 + e − z \delta(z) = \frac{1}{1+e^{-z}} δ(z)=1+ez1,其函数图像如下所示:
在这里插入图片描述
δ ( z ) &gt; 0.5 \delta(z) &gt; 0.5 δ(z)>0.5,也就是 w T x + b &lt; 0 w^Tx+b &lt; 0 wTx+b<0时,其输出 y ^ = 0 \hat{y} = 0 y^=0
δ ( z ) &lt; 0.5 \delta(z) &lt; 0.5 δ(z)<0.5,即也就是 w T x + b &lt; 0 w^Tx+b &lt; 0 wTx+b<0时,其输出 y ^ = 0 \hat{y} = 0 y^=0.

逻辑回归损失函数

对于逻辑回归问题,给定训练样本:
{ ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) … … ( x ( m ) , y ( m ) ) } \{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)})……(x^{(m)},y^{(m)}) \} {(x(1),y(1)),(x(2),y(2))(x(m),y(m))},我们希望得到 y ^ ≈ y \hat{y} \approx y y^y。逻辑回归的损失函数 L ( y ^ , y ) L(\hat{y},y) L(y^,y)可以由以下公式定义:

L ( y ^ , y ) = − y l o g ( y ^ ) − ( 1 − y ) l o g ( 1 − y ^ ) L(\hat{y},y) = -ylog(\hat{y}) -(1-y)log(1-\hat{y}) L(y^,y)=ylog(y^)(1y)log(1y^)

对于以上损失函数,有:
y = 1 y = 1 y=1,则 L ( y , y ^ ) = − y l o g ( y ^ ) L(y,\hat{y}) = -ylog(\hat{y}) L(y,y^)=ylog(y^),而想让损失函数 L ( y , y ^ ) L(y,\hat{y}) L(y,y^)尽可能小,意味着 y ^ \hat{y} y^要尽可能大,又因为 0 ≤ y ^ ≤ 1 0 \le\hat{y} \le 1 0y^1,所以 y ^ = 1 \hat{y} = 1 y^=1是,损失函数最小。

y = 0 y = 0 y=0,则 L ( y , y ^ ) = − l o g ( 1 − y ^ ) L(y,\hat{y}) = -log(1-\hat{y}) L(y,y^)=log(1y^),损失函数要取得最小值,意味着 y ^ \hat{y} y^需取得最大值,则需满足 y ^ = 0 \hat{y} = 0 y^=0

以上损失函数只适用于单个样本,对于 m m m个样本的损失函数可以有如下定义:

J ( w , b ) = 1 m ∑ i = 1 m L ( y , y ^ ) = 1 m ∑ i = 1 m − y ( i ) l o g ( y ^ ( i ) ) − ( 1 − y ( i ) ) l o g ( 1 − y ^ ( i ) ) J(w,b) = \frac{1}{m}\sum_{i=1}^{m}L(y,\hat{y}) = \frac{1}{m}\sum_{i=1}^{m}-y^{(i)}log(\hat{y}^{(i)})-(1-y^{(i)})log(1-\hat{y}^{(i)}) J(w,b)=m1i=1mL(y,y^)=m1i=1my(i)log(y^(i))(1y(i))log(1y^(i))

梯度下降法

对于以上损失函数,需要找到损失函数 J ( w , b ) J(w,b) J(w,b)的最小值,最常用的算法就是梯度下降算法,即对于一个凸函数,总能通过梯度下降算法找到它的全局最优解,对于此损失函数的梯度下降算法,在机器学习之逻辑回归的算法介绍中已经做了较为详细的推导,在此不再过多叙述,梯度下降算法的简单实现步骤如下所示:
r e p e a t    { repeat \ \ \{ repeat  {
w : = w − α ∂ J ( w , b ) ∂ w w: = w- \alpha \frac{\partial J(w,b)}{\partial w} w:=wαwJ(w,b)

} \} }
重复以上过程,直到损失函数收敛,以求得参数 w w w的值,其中, α \alpha α代表学习率。

计算图

计算图介绍:

假设有一函数表达式为: J ( a , b , c ) = 3 ( a + b c ) J(a,b,c) = 3(a+bc) J(a,b,c)=3(a+bc),其计算过程可以简单分为三个步骤,如下所示:

  • u = b c u = bc u=bc
  • v = a + u v = a +u v=a+u
  • J = 3 ∗ v J =3*v J=3v

对于以上三个步骤,用计算图可以有如下表示:
在这里插入图片描述

计算图的导数:

如上图所示,利用计算图从左向右的流程,一步步可以算出 J J J的值,那么,依靠从右向左的反向传播就可以算出 J J J对每个变量的导数,如下图所示:

在这里插入图片描述
其反向传播过程如图中红色箭头所示,根据导数定义以及链式计算法则,有如下计算:

∂ J ∂ v = 3 \frac{\partial J}{\partial v} = 3 vJ=3

∂ J ∂ u = ∂ J ∂ v ∂ v ∂ u = 3 × 1 = 3 \frac{\partial J}{\partial u} =\frac{\partial J}{\partial v} \frac{\partial v}{\partial u} = 3×1 = 3 uJ=vJuv=3×1=3

∂ J ∂ a = ∂ J ∂ v ∂ v ∂ a = 3 × 1 = 3 \frac{\partial J}{\partial a} =\frac{\partial J}{\partial v} \frac{\partial v}{\partial a} = 3×1 =3 aJ=vJav=3×1=3

∂ J ∂ b = ∂ J ∂ v ∂ v ∂ u ∂ u ∂ b = 3 × 1 × 5 = 15 \frac{\partial J}{\partial b} =\frac{\partial J}{\partial v} \frac{\partial v}{\partial u} \frac{\partial u}{\partial b} = 3×1×5 =15 bJ=vJuvbu=3×1×5=15

∂ J ∂ c = ∂ J ∂ v ∂ v ∂ u ∂ u ∂ c = 3 × 1 × 4 = 12 \frac{\partial J}{\partial c} =\frac{\partial J}{\partial v} \frac{\partial v}{\partial u} \frac{\partial u}{\partial c} = 3×1×4 =12 cJ=vJuvcu=3×1×4=12

逻辑回归中的梯度下降算法

单个样本的逻辑回归梯度下降算法

关于逻辑回归的损失函数,有如下公式:
z = w T x + b z= w^Tx+b z=wTx+b
y ^ = a = δ ( z ) \hat{y} = a = \delta(z) y^=a=δ(z)
L ( a , y ) = − y l o g ( a ) − ( 1 − y ) l o g ( 1 − a ) L(a,y) = -ylog(a)-(1-y)log(1-a) L(a,y)=ylog(a)(1y)log(1a)
假设有两个输入特征 x 1 , x 2 x_1,x_2 x1,x2和两个参数 w 1 , w 2 w_1,w_2 w1,w2,则用计算图(流程图)表示其计算过程如下所示:
在这里插入图片描述
依照其计算图中的反向传播过程和链式法则,其导数计算如下所示:

∂ L ( a , y ) ∂ a = − y a + 1 − y 1 − a \frac{\partial L(a,y)}{\partial a} = -\frac{y}{a}+\frac{1-y}{1-a} aL(a,y)=ay+1a1y

∂ L ( a , y ) ∂ z = ∂ L ∂ a ∂ a ∂ z = a − y \frac{\partial L(a,y)}{\partial z} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} = a-y zL(a,y)=aLza=ay

∂ L ( a , y ) ∂ w 1 = ∂ L ∂ a ∂ a ∂ z ∂ z ∂ w 1 = x 1 d z = x 1 ∗ ( a − y ) \frac{\partial L(a,y)}{\partial w_1} =\frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial w_1} =x_1dz = x_1*(a-y) w1L(a,y)=aLzaw1z=x1dz=x1(ay)

∂ L ( a , y ) ∂ w 2 = ∂ L ∂ a ∂ a ∂ z ∂ z ∂ w 2 = x 2 d z = x 2 ∗ ( a − y ) \frac{\partial L(a,y)}{\partial w_2} =\frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial w_2} = x_2dz = x_2*(a-y) w2L(a,y)=aLzaw2z=x2dz=x2(ay)

∂ L ( a , y ) ∂ b = ∂ L ∂ a ∂ a ∂ z ∂ z ∂ b = d z = ( a − y ) \frac{\partial L(a,y)}{\partial b} =\frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial b} = dz = (a-y) bL(a,y)=aLzabz=dz=(ay)
···

最后,参数 w 1 , w 2 , b w_1,w_2,b w1,w2,b的更新规律为:
w 1 : = w 1 − α d w 1 w_1 := w_1 - \alpha dw_1 w1:=w1αdw1
w 2 : = w 2 − α d w 2 w_2 := w_2 - \alpha dw_2 w2:=w2αdw2
b : = b − α d b b := b - \alpha db b:=bαdb
其中, α \alpha α表示学习率。

m m m个样本的逻辑回归

m m m个样本的损失函数,如下所示:

J ( w , b ) = 1 m ∑ i = 1 m L ( a ( i ) , y ( i ) ) J(w,b) = \frac{1}{m}\sum_{i=1}^{m}L(a^{(i)},y^{(i)}) J(w,b)=m1i=1mL(a(i),y(i))

a ( i ) = y ^ ( i ) = δ ( z ( i ) ) = δ ( w T x ( i ) + b ) a^{(i)} = \hat{y}^{(i)} = \delta(z^{(i)}) = \delta(w^Tx^{(i)} +b) a(i)=y^(i)=δ(z(i))=δ(wTx(i)+b)

其梯度计算公式,可以有如下表示:

∂ J ( w , b ) ∂ w = 1 m ∑ i = 1 m ∂ ∂ w L ( a ( i ) , y ( i ) ) \frac{\partial J(w,b)}{\partial w} = \frac{1} {m}\sum_{i=1}^{m}\frac{\partial }{\partial w}L(a^{(i)},y^{(i)}) wJ(w,b)=m1i=1mwL(a(i),y(i))

在实际计算过程中,需要计算每一个样本的关于 w w w的梯度,最后求和取平均,在一个具体算法实现中,其为代码可以如下所示:

假设有2个特征向量, m m m个样本,则有:
初始化: J = 0 , d w 1 = 0 , d w 2 = 0 J = 0, dw_1 = 0,dw_2 = 0 J=0,dw1=0,dw2=0
f o r     i = 1    t o    m : for\ \ \ i =1 \ \ to \ \ m: for   i=1  to  m:

        z ( i ) = w T x ( i ) + b ; \ \ \ \ \ \ \ z^{(i)} = w^Tx^{(i)} +b;        z(i)=wTx(i)+b;

        a ( i ) = δ ( z ( i ) ) ; \ \ \ \ \ \ \ a^{(i)} =\delta(z^{(i)});        a(i)=δ(z(i));

        J + = − y ( i ) l o g ( a ( i ) ) − ( 1 − y ( i ) ) l o g ( 1 − a ( i ) ) ; \ \ \ \ \ \ \ J+ = -y^{(i)}log(a^{(i)})-(1-y^{(i)})log(1-a^{(i)});        J+=y(i)log(a(i))(1y(i))log(1a(i));

        d z ( i ) = a ( i ) − y ( i ) ; \ \ \ \ \ \ \ dz^{(i)} =a^{(i)} - y^{(i)};        dz(i)=a(i)y(i);

        d w 1 + = x 1 ∗ d z ( i ) ; \ \ \ \ \ \ \ dw_1 +=x_1*dz^{(i)};        dw1+=x1dz(i);

        d w 2 + = x 2 ∗ d z ( i ) ; \ \ \ \ \ \ \ dw_2 +=x_2*dz^{(i)};        dw2+=x2dz(i);

        d b   + = d z ( i ) ; \ \ \ \ \ \ \ db \ +=dz^{(i)};        db +=dz(i);

J / = m , d w 1 / = m , d w 2 / = m , d b / = m ; J/=m,dw_1/=m,dw_2/=m,db/=m; J/=m,dw1/=m,dw2/=m,db/=m;

以上,是应用一次梯度下降的过程,应用多次梯度下降算法之后,其参数的更新如下所示:
w 1 : = w 1 − α d w 1 w_1 := w_1 - \alpha dw_1 w1:=w1αdw1
w 2 : = w 2 − α d w 2 w_2 := w_2 - \alpha dw_2 w2:=w2αdw2
b : = b − α d b b := b - \alpha db b:=bαdb

注意:以上,算法实现过程中,有两个特征和参数,分别是 x 1 , x 2 x_1,x_2 x1,x2 w 1 , w 2 w_1,w_2 w1,w2,当有 n n n个特征和参数时,可以利用循环完成。

向量化

向量化的简单示例:

如以上算法表示,通过for循环来遍历 m m m个样本和 n n n个特征,当在整个算法运行过程中,需要考虑运行时间的问题,当样本数量和特征足够大时,采用传统的for循环不是一个明智的选择,为了减少算法运行时间,特地引入了向量化的实现。
将一以下代码作为示例:

import numpy as np
import random
import time
a = np.random.rand(1000000)
b = np.random.rand(1000000)
ts = time.time()
c = np.dot(a,b)
te = time.time()
print(c)
print("向量化的代码实现花费时间:"+str((te-ts)*1000)+" ms")

c = 0
ts = time.time()
for i in range(1000000):
    c += a[i]*b[i]
te = time.time()
print(c)

print("for循环代码实现花费时间:"+str((te-ts)*1000)+" ms")

如上所示,同样实现两个数组(向量)相乘的过程,对于百万级别的数据,for循环的实现方式所花费的时间差不多是向量化的400倍左右,向量化的实现可以简单的理解为是一个并行的过程,而for循环可以简单理解为串行的过程,所以通过向量化的实现,大大节省了运行程序所耗费的时间。在算法实现过程中,应该尽量避免使用for循环。

用向量化实现逻辑回归:

对于逻辑回归的算法,需要考虑输入向量 X X X和权重参数 W W W,其中, X ∈ R n × m X \in R^{n×m} XRn×m W ∈ R n × 1 W \in R^{n×1} WRn×1,而根据矩阵乘法运算法则和逻辑回归的实现原理,有:
[ z 1 , z 2 , … … z m ] = [ W T X ] + [ b 1 , b 2 , … … b m ] [z_1,z_2,……z_m] = [W^TX]+[b_1,b_2,……b_m] [z1,z2,zm]=[WTX]+[b1,b2,bm]

python中用numpy库,可以简单的用以下一行代码实现(一般认为 b b b是一个R^{1×1}的偏置常量):

z = np.dot(W.T,x)+b

根据之前的学习,对于逻辑回归利用反向传播算法计算导数,有:

        d z ( i ) = a ( i ) − y ( i ) ; \ \ \ \ \ \ \ dz^{(i)} =a^{(i)} - y^{(i)};        dz(i)=a(i)y(i);
        d w 1 + = x 1 ∗ d z ( i ) ; \ \ \ \ \ \ \ dw_1 +=x_1*dz^{(i)};        dw1+=x1dz(i);
        d w 2 + = x 2 ∗ d z ( i ) ; \ \ \ \ \ \ \ dw_2 +=x_2*dz^{(i)};        dw2+=x2dz(i);
        . . . \ \ \ \ \ \ \ ...        ...
        d w n + = x n ∗ d z ( i ) ; \ \ \ \ \ \ \ dw_n +=x_n*dz^{(i)};        dwn+=xndz(i);
        d b   + = d z ( i ) ; \ \ \ \ \ \ \ db \ +=dz^{(i)};        db +=dz(i);
J / = m , d w 1 / = m , d w 2 / = m , d b / = m ; J/=m,dw_1/=m,dw_2/=m,db/=m; J/=m,dw1/=m,dw2/=m,db/=m;

对于以上,公式,有如下定义:
d Z = [ d z ( 1 ) , d z ( 2 ) … … d z ( m ) ] dZ = [dz^{(1)},dz^{(2)}……dz^{(m)}] dZ=[dz(1),dz(2)dz(m)]
A = [ a ( 1 ) , a ( 2 ) , … … a ( m ) ] A = [a^{(1)},a^{(2)},……a^{(m)}] A=[a(1),a(2),a(m)]
Y = [ y ( 1 ) , y ( 2 ) … … y ( m ) ] Y = [y^{(1)},y^{(2)}……y^{(m)}] Y=[y(1),y(2)y(m)]
d Z = [ A − Y ] dZ = [A - Y] dZ=[AY]
对于以上过程,摈弃传统的for循环实现,采用向量化的实现方式可以简单表示为:

dw = np.dot(X,dZ^T)
db = 1/m*np.sum(dZ)

综合以上所有向量化的实现,可以得到利用python实现的一个高度向量化的逻辑回归梯度下降算法(a代表学习率):

Z = np.dot(W^T,X)+b
A = np.exp(Z)
dZ = A-Y
dw = np.dot(X,dZ^T)
db = 1/m*np.sum(dZ)
w = w-a*dw
b = b-a*db

以上,只是实现一次梯度下降的伪代码,在实际算法运行过程中,我们仍然需要利用循环实现多次梯度下降。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值