Super__Tiger
码龄5年
  • 557,591
    被访问
  • 97
    原创
  • 4,486
    排名
  • 14,567
    粉丝
关注
提问 私信

个人简介:专注于人工智能、区块链及其应用、互联网运营等知识领域的养成系博主!(づ ̄3 ̄)づ╭~

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2017-12-12
博客简介:

Spuer_Tiger

博客描述:
(づ ̄3 ̄)づ╭❤~ 专注于挖掘C++、Python、人工智能、数学理论知识领域的养成系博主!与阿里云、腾讯云有合作,关注我,可享受福利折扣。
查看详细资料
  • 7
    领奖
    总分 3,642 当月 19
个人成就
  • 获得3,111次点赞
  • 内容获得1,198次评论
  • 获得7,854次收藏
创作历程
  • 4篇
    2022年
  • 25篇
    2021年
  • 49篇
    2020年
  • 21篇
    2019年
成就勋章
TA的专栏
  • 杂谈
    16篇
  • python:水果与设计模式
    6篇
  • C++进阶
    4篇
  • 数据结构与算法
    8篇
  • python
    34篇
  • DeepLearning
    20篇
  • 机器学习
    18篇
  • tensorflow实战
    11篇
  • 计算机视觉
    4篇
  • 操作系统
    1篇
  • 数学理论知识
    14篇
  • 线性代数
    2篇
  • 英语语法•作文翻译
    4篇
兴趣领域 设置
  • 人工智能
    深度学习自动驾驶
  • 区块链
    虚拟货币区块链数字货币去中心化同态加密
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

活体检测技术哪家强?实测N种场景告诉你答案

活体检测是在一些身份验证场景确定对象真实生理特征的方法,在人脸识别应用中,活体检测能通过眨眼、张嘴、摇头、点头等组合动作(配合式),使用人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体操作。目前活体检测的方式主要分为三种,分别是:配合式活体检测、静默式活体检测、双目活体检测。因为,得有双目摄像头,而我们涉及身份验证的场景基本上都是在手机上验证,众所周知,手机的摄像头大多数是单目摄像头。除此之外,还有一个原因就是双目摄像头贵。然后 第一,安全且检测精度高;第二,操作简单,不需要过多的动作配合.....
原创
发布博客 2022.06.07 ·
9322 阅读 ·
6 点赞 ·
5 评论

医学影像:静息态fmri数据的预处理

本文主要详细介绍了静息态fmri数据的预处理,什么是静息态功能核磁共振,以及从理论部分到实践部分,深度地讲解记录其中的细节,内容中的截图源自于暑期天津医科大学的功能项脑影像培训班,本文仅供学习参考,如有侵权,联系后将立即删除。
原创
发布博客 2022.05.03 ·
891 阅读 ·
4 点赞 ·
7 评论

以云服务器产品为例,深度分析比对华为云、阿里云、腾讯云

市场背景数据显示,在经济运行缓中趋稳和各项惠企纾困政策效应等因素共同作用下,2021年11月中小企业发展指数结束连续7个月的下跌态势,回升至86.3,比上月上升0.2点,在2021年三季度以来经济下行的大背景下,这个积极的趋势显得格外突出。 但在第四季度中,中小企业迎来一波迅速回升,并且增长势头很可能延续至2022年。 (源自中国中小企业协会的相关研究报告)工信部也将在“十四五”时期实施“中小企业数字化促进工程”,到2022年底,组织100家以上工业互联网平台和数字化转型服务商为10万家以上中小企业提供
原创
发布博客 2022.03.11 ·
1458 阅读 ·
5 点赞 ·
0 评论

杂谈:国内的nft平台测评之收割机怎么样了?

就在1月11日,周杰伦在Instagram发文庆祝Phanta Bear位列OpenSea过去一周交易额排行榜第一,并配文:“做什么都要第一,When I said I am all about being no. 1, I wasn't kidding!”。目前在OpenSea上,Phanta Bear**交易额已经超过BAYC达到了17511.95 ETH,增长率达到418.79%。
原创
发布博客 2022.01.20 ·
19231 阅读 ·
6 点赞 ·
4 评论

Datawhale开源学习:Linux系统基本操作的详细记录

文章目录1.使用命令行登录指定的Linux环境2.在目录下创建文件夹、删除文件夹3.在目录下下载文件、阅读文件、传输文件4.在目录下使用vi或vim编辑文件5.在目录下创建py文件,并运行6.在目录下创建py目录,并使用import导入(有坑)7.在Linux系统中后台运行应用程序,并打印日志1.使用命令行登录指定的Linux环境ssh工具有很多,我们当然选择免费又美观的一款啦,https://blog.csdn.net/puss0/article/details/103390947,可参考这篇博客,这
原创
发布博客 2021.12.18 ·
1482 阅读 ·
8 点赞 ·
7 评论

图像处理算法_matlab代码.zip

发布资源 2021.10.30 ·
zip

1024,鸽了1024篇博文的我。。。

1024,鸽了1024篇博文的我。。。最近,硕士研究生刚开学,鉴于小菜鸡的我刚开始我的“填坑”之路,很忙,对,真的!!!我在忙什么?忙于脑网络的学习,还有神经网络架构方面的研究摸索。。。那么本文会很干嘛?不,没有,莫得时间写“硬干”文,所以这篇博客给大家分享一些我收藏的不错的网站。不想听菜鸡废话的→直接截图↓超分辨率、原创、二次元、三次元壁纸网站https://wallhaven.cc/latest?page=2超分辨率、高速稳定的电影&追剧网站https:/
原创
发布博客 2021.10.23 ·
2169 阅读 ·
35 点赞 ·
6 评论

分享好文! 《❤️《数据科学中的天降神兵-Pandas、Numpy、Matplotlib》秘籍之精炼总结》 https://blog.csdn.net/acceptedday/article/details/120150373?

发布动态 2021.09.07

❤️数据科学-Pandas、Numpy、Matplotlib秘籍之精炼总结

最近,很多小伙伴在后台私信我,咨询有没有数据处理及可视化的相关系统教程?我的回复是,这些库只是工具,无需花费很长的时间牢记这些命令的使用,学习一遍之后整理好笔记即可,遗忘之时再查找这些笔记使用即可。本文是博主本人结合自己的使用经验以及各大博主的分享精炼汇总而成,耗时进半个月的时候,翻阅博客和参考资料无数,最后精选了最实用、常用、好用的“Pandas、Numpy、Matplotlib”三大神兵利器的方法使用攻略。
原创
发布博客 2021.09.07 ·
5451 阅读 ·
55 点赞 ·
35 评论

❤️解决非线性回归问题的机器学习方法总结:多项式线性模型、广义线性(GAM)模型、回归树模型、支持向量回归(SVR)模型

本文主要总结了解决非线性回归问题的机器学习方法,其中包括多项式线性模型、广义线性(GAM)模型、回归树模型、支持向量回归(SVR)模型,每个模型的方法都有其特点。多项式线性模型和GAM模型侧重于经验风险误差最小化,容易过拟合;回归树模型和SVR模型侧重于结构风险最小化,对异常值数据更不敏感,回归树模型可通过剪枝和压缩的方式去降低过拟合的风险,SVR模型具有较好的区间内鲁棒能力。
原创
发布博客 2021.08.23 ·
2005 阅读 ·
24 点赞 ·
28 评论

模糊c–均值聚类算法的原理解释及推导

模糊????–均值聚类算法的原理推导及解释前置知识:????–均值聚类的缺陷算法要求每个样本数据点在一次迭代过程中只能被划分到某个特定的簇中。样本数据并非都满足这种非此即彼的刚性划分。在k-均值聚类存在缺陷的情况下,我们提出了模糊c-均值聚类算法。核心部分:模糊????–均值聚类基本思想:使用模糊数学中属于[0,1]区间的隶属度指的是度量单个样本隶属于各个簇的程度。规定每个样本到所有簇的隶属度之和均为1,若某个样本到某个簇的隶属度为1,则表示该样本完全隶属于该簇。原理推导:如
原创
发布博客 2021.08.21 ·
1148 阅读 ·
7 点赞 ·
4 评论

BP算法的原理解释和推导

BP算法的原理解释和推导已知的神经网络结构:且已知的条件:a(j)=f(z(j))\mathbf{a}^{\left( \mathbf{j} \right)}=\mathbf{f}\left( \mathbf{z}^{\left( \mathbf{j} \right)} \right)a(j)=f(z(j))z(j)=W(j)a(j−1)+b(j),而θ(j)={W(j),b(j)}\mathbf{z}^{\left( \mathbf{j} \right)}=\mathbf{W}^{\left(
原创
发布博客 2021.08.17 ·
594 阅读 ·
6 点赞 ·
4 评论

❤️【独家】挑战全网最通俗易懂的神经网络的表达能力解释

❤️【独家】挑战全网最通俗易懂的神经网络的表达能力解释如上图所示,是初学者对于神经网络非线性表达能力最直观的印象图,在w=1的情况下,我们通过改变偏置项b能够改变输出函数y=0.5的分界位置。改变权重参数w,即改变输出函数y的坡度(“平缓”/“陡峭”);改变偏置项b,即改变输出函数y=0.5的分界位置。当我们的网络结构足够复杂的时候,我们的函数图像将会迎来它的表达能力的“巅峰”
原创
发布博客 2021.08.16 ·
2034 阅读 ·
30 点赞 ·
24 评论

帅小伙在家自制锡纸牛肉, 做好之后, 惊呼:“卧槽!!”

发布动态 2021.08.12

Adaboost算法的原理推导及解释

AdaBoost是一种具有自适应性质的Boosting集成学习算法,自适应性主要表现在自动提升被错误预测样本的权重,自动减少被正确预测样本的权重,使得弱学习器训练过程能够根据模型预测性能自动进行调整。
原创
发布博客 2021.08.11 ·
476 阅读 ·
15 点赞 ·
14 评论

EM算法的原理推导及解释

本质上,EM算法针对于存在明显可疑的隐藏变量z,该变量影响着直观的样本数据的分布情况(即:方差、均值等),但是我们又无法得知和计算出准确的隐藏变量z。于是,我们采用迭代的方式,设定已知模型的参数初值,然后结合已有的样本信息将隐藏变量z的期望以累计的形式进行表示出,然后进一步对当前的参数偏导求解更新新一轮的参数。
原创
发布博客 2021.08.03 ·
293 阅读 ·
9 点赞 ·
3 评论

支持向量机(SVM)的原理推导及解释

文章目录支持向量机(SVM)的原理推导及解释1.线性可分支持向量机(linear support vector machine in linearly separable case)2.线性支持向量机(linear support vector machine)3.非线性支持向量机(non-linear support vector machine)支持向量机(SVM)的原理推导及解释支持向量机的本质:选出最优的分类超平面(标准:离超平面最近距离的样本点最远的超平面)。假定超平面方程WTx+b=0\m
原创
发布博客 2021.08.01 ·
1491 阅读 ·
19 点赞 ·
9 评论
加载更多