阵列信号基础:天线阵列模型

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_23947237/article/details/82532870

天线阵列模型

0. 前言

阵列信号处理基础本质上属于参数估计问题,和信道估计知识基本上别无二致。末学在这里整理了阵列信号处理的基础知识。

3. 天线阵列模型1

天线阵元之间的摆放位置影响着阵列接收信号的数学模型,不同的天线阵列模型有着不一样的应用场景,并影响着阵列信号处理的方法。

3.1 均匀线阵

ula1

假设 MM 个阵元等距离排列成一条直线,阵元间距为 dd。假设选取最左边的天线阵元作为参考点,则第 mm 个天线阵元相对于参考点的时间延迟可以表示为
τm(θi)=(m1)dsinθiv \tau_m(\theta_i) = \frac{(m-1)d \sin \theta_i}{v}

  • 各天线阵元之间的互耦效应忽略不计,且阵元间距为最高频率源信号的半波长,即 d=λ2d=\frac{\lambda}{2}

  • 传播距离远大于阵列大小,即信号在介质中以平面波的形式到达阵列。

  • 接收机各个通道拥有完全相同的特性。

根据以上假设,方向向量可以写为
a(θi)=[1,ejπsinθi,ej2πsinθi, ,ej(M1)πsinθi]T \mathbf{a}(\theta_i) = \left[1,e^{j\pi \sin \theta_i},e^{j2\pi \sin \theta_i},\cdots,e^{j(M-1)\pi \sin \theta_i} \right]^T

在这里很尴尬地说,我用了好久的模型都是 ej(k1)πβie^{-j(k-1)\pi \beta_i},今天才发现如果参考点为第一个阵元在最左边的话,指数应该是没有符号的,也就是上面的式子是正确的!
%%
当然,如果是如下图这种,参考阵元第一个在最右边,从右往左建模,则需要加符号!
%%
updated by 2019/7/19

update

3.2 L 型阵

ll

如图为 L 型阵列模型,在 xx 轴和 yy 轴均 MM 个阵元,阵元间距为 ddKK 个信源,二维入射角为 (θi,φi)(\theta_i,\varphi_i)xx 轴上的接收信号模型可以视为线性阵列,yy 轴同理:
X=AxS+NxY=AyS+Ny \begin{aligned} X &= A_xS+N_x \\ Y &= A_yS+N_y \end{aligned}

其中,方向矩阵为
Ax=[ax(θ1,φ1), ,ax(θK,φK)]Ay=[ay(θ1,φ1), ,ay(θK,φK)]ax(θi,φi)=[1,ej2πλdcosθisinφi, ,ej2πλ(M1)dcosθisinφi]Tay(θi,φi)=[1,ej2πλdsinθisinφi, ,ej2πλ(M1)dsinθisinφi]T \begin{aligned} A_x &= \left[a_x(\theta_1,\varphi_1),\cdots,a_x(\theta_K,\varphi_K)\right] \\ A_y &= \left[a_y(\theta_1,\varphi_1),\cdots,a_y(\theta_K,\varphi_K)\right] \\ a_x(\theta_i,\varphi_i) &= \left[1,e^{-j\frac{2\pi}{\lambda}d \cos\theta_i \sin\varphi_i},\cdots,e^{-j\frac{2\pi}{\lambda}(M-1)d \cos\theta_i \sin\varphi_i}\right]^T \\ a_y(\theta_i,\varphi_i) &= \left[1,e^{-j\frac{2\pi}{\lambda}d \sin\theta_i \sin\varphi_i},\cdots,e^{-j\frac{2\pi}{\lambda}(M-1)d \sin\theta_i \sin\varphi_i}\right]^T \end{aligned}

3.3 均匀平面阵

mmm

假设有 KK 个信号源,均匀平面阵列指的是 MM 个天线阵元等间距的排列成一个正方形或者矩形,如上图所示由 M×NM\times N 个阵元组成。xx 轴方向有 NN 个间距为 dd 的均匀线阵,yy 轴方向有 MM 个间距为 dd 的均匀线阵。如果选取原点为参考点,另外某个阵元的坐标可以写为 (xn,ym)(x_n,y_m),于是时延差可以写为

τn,m(φk,θk)=xnsinφkcosθk+ymsinφksinθkvan,m(φk,θk)=exp(jw0τn,m(φk,θk))X=AS+NS=[s1(t), ,sK(t)]TCK×1A=[a(θ1,φ1), ,a(θK,φK)]CNM×K \begin{aligned} \tau_{n,m}(\varphi_k,\theta_k) &= \frac{x_n\sin\varphi_k\cos\theta_k + y_m\sin\varphi_k\sin\theta_k}{v}\\ a_{n,m}(\varphi_k,\theta_k) &= \exp\left(-jw_0\tau_{n,m}(\varphi_k,\theta_k)\right) \\ X &= AS+N \\ S &= \left[s_1(t),\cdots,s_K(t)\right]^T \in \mathbb{C}^{K \times 1}\\ A &= \left[a(\theta_1,\varphi_1),\cdots,a(\theta_K,\varphi_K)\right] \in \mathbb{C}^{NM \times K} \end{aligned}
简单解释下这里的时延差公式怎么来的:
由之前的 ULA 基础可知,沿着入射波方向的长度差等于阵元 (xn,ym)(x_n,y_m) 到原点直连距离 rr 乘以入射波与平面阵法线的夹角角度的正弦 sinφk\sin \varphi_k
即这段沿着入射波方向的长度差为 rsinφkr\cdot \sin \varphi_k。而在 xoyxoy 平面上,
xn2+ym2=r2xn=rcosθkym=rsinθk \begin{aligned} x_n^2+y_m^2 &= r^2 \\ x_n &= r \cos \theta_k \\ y_m &= r \sin \theta_k \end{aligned}
于是就有
r=r(cos2θk+sin2θk)=rcosθkcosθk+rsinθksinθk=xncosθk+ymsinθk \begin{aligned} r&=r(\cos^2 \theta_k+\sin^2 \theta_k) \\ &=r \cos \theta_k \cdot \cos \theta_k + r \sin \theta_k \cdot \sin \theta_k \\ &=x_n \cos \theta_k+ y_m \sin \theta_k \end{aligned}

xx 轴对应的 NN 个阵元的方向矩阵和从 yy 轴对应的 MM 个阵元的方向矩阵为
Ax=[ax(θ1,φ1), ,ax(θK,φK)]Ay=[ay(θ1,φ1), ,ay(θK,φK)]ax(θi,φi)=[1,ej2πλdcosθisinφi, ,ej2πλ(N1)dcosθisinφi]Tay(θi,φi)=[1,ej2πλdsinθisinφi, ,ej2πλ(M1)dsinθisinφi]T \begin{aligned} A_x &= \left[a_x(\theta_1,\varphi_1),\cdots,a_x(\theta_K,\varphi_K)\right] \\ A_y &= \left[a_y(\theta_1,\varphi_1),\cdots,a_y(\theta_K,\varphi_K)\right] \\ a_x(\theta_i,\varphi_i) &= \left[1,e^{-j\frac{2\pi}{\lambda}d \cos\theta_i \sin\varphi_i},\cdots,e^{-j\frac{2\pi}{\lambda}(N-1)d \cos\theta_i \sin\varphi_i}\right]^T \\ a_y(\theta_i,\varphi_i) &= \left[1,e^{-j\frac{2\pi}{\lambda}d \sin\theta_i \sin\varphi_i},\cdots,e^{-j\frac{2\pi}{\lambda}(M-1)d \sin\theta_i \sin\varphi_i}\right]^T \end{aligned}

gs

则可以得到方向矩阵
X=AS+NS=[s1(t), ,sK(t)]TCK×1A=[a(θ1,φ1), ,a(θK,φK)]=[AxD1(Ay)AxD2(Ay)AxDM(Ay)]CNM×K \begin{aligned} X &= AS+N \\ S &= \left[s_1(t),\cdots,s_K(t)\right]^T \in \mathbb{C}^{K \times 1}\\ A &= \left[a(\theta_1,\varphi_1),\cdots,a(\theta_K,\varphi_K)\right] \\ &= \begin{bmatrix} A_x D_1(A_y) \\ A_x D_2(A_y) \\ \vdots \\ A_x D_M(A_y) \end{bmatrix} \in \mathbb{C}^{NM \times K} \end{aligned}
其中 Di()D_i(\cdot) 表示取矩阵的第 ii 行作为构成对角矩阵的对角元素。

3.4 均匀圆阵

yy

如图所示为均匀圆阵模型,MM 个阵元均匀分布在圆周上,假设 KK 个信源,二维入射角为 (θi,φi)(\theta_i,\varphi_i),一般取圆周上两个阵元的间距为 λ/2\lambda/2,对应的圆半径取为 R=λ4/sin(πM)R = \frac{\lambda}{4} / \sin(\frac{\pi}M),阵列的第 mm 个阵元与 xx 轴的角度用 2πM(m1)\frac{2\pi}{M}\cdot (m-1) 表示。

y1

以原点为参考点,则位于 xx 轴正方向的阵元视为沿着半径方向为轴的参考系。则有时延差:
τm=1,i=Rsinφicosθiv \tau_{m=1,i} = \frac{R \sin\varphi_i \cos\theta_i}{v}
其中 θi\theta_i 是入射投影与半径方向的轴之间的夹角。同理第 mm 个阵元即把阵元与原点之间的半径方向作为参考轴,此时入射投影与半径方向的轴之间的夹角为 θi2π(m1)M\theta_i-\frac{2\pi(m-1)}{M}。则有时延差:
τm,i=Rsinφicos(θi2π(m1)M)v \tau_{m,i} = \frac{R \sin\varphi_i \cos\left(\theta_i-\frac{2\pi(m-1)}{M}\right)}{v}
于是阵列方向向量为
A=[a(θ1,φ1), ,a(θK,φK)]a(θi,φi)=[exp(j2πRsinφicos(θi))exp(j2πRsinφicos(θi2πM))exp(j2πRsinφicos(θi2π(M1)M))] \begin{aligned} A &= \left[a(\theta_1,\varphi_1),\cdots,a(\theta_K,\varphi_K)\right] \\ a(\theta_i,\varphi_i) &= \begin{bmatrix} \exp\left(-j2\pi R\sin\varphi_i \cos\left(\theta_i\right)\right) \\ \exp\left(-j2\pi R\sin\varphi_i \cos\left(\theta_i-\frac{2\pi}{M}\right)\right) \\ \vdots \\ \exp\left(-j2\pi R\sin\varphi_i \cos\left(\theta_i-\frac{2\pi(M-1)}{M}\right)\right) \end{bmatrix} \end{aligned}

3.5 任意三维阵列天线模型

rd

如图所示为任意阵列模型。假设 MM 个阵元任意分布在空间中,二维入射角为 (θi,φi)(\theta_i,\varphi_i),假设有 KK 个信号源。则入射的方向矢量为:
V=[sinφicosθisinφisinθicosφi]T \mathbf{V} = \begin{bmatrix} \sin\varphi_i\cos\theta_i & \sin\varphi_i\sin\theta_i & \cos\varphi_i \end{bmatrix}^T
如果第 mm 个阵元的坐标位置为 rm=(xm,ym,zm)\mathbf{r}_m = ( x_m, y_m, z_m) ,波速为 vv。那么

τm(θi,φi)=1v(xmsinφicosθi+ymsinφisinθi+zmcosφi) \tau_{m}(\theta_i,\varphi_i) = \frac{1}{v} \left(x_m \sin\varphi_i\cos\theta_i + y_m \sin\varphi_i\sin\theta_i+ z_m \cos\varphi_i\right)

因此可得导向矢量:
a(θi,φi)=[p1(θi,φi)exp(j2πλr1V)p2(θi,φi)exp(j2πλr2V)pM(θi,φi)exp(j2πλrMV)] \mathbf{a}(\theta_i,\varphi_i) = \begin{bmatrix} p_1(\theta_i,\varphi_i) \exp(j \frac{2\pi}{\lambda} \mathbf{r}_1 \cdot \mathbf{V}) \\ p_2(\theta_i,\varphi_i) \exp(j \frac{2\pi}{\lambda} \mathbf{r}_2 \cdot \mathbf{V}) \\ \vdots\\ p_M(\theta_i,\varphi_i) \exp(j \frac{2\pi}{\lambda} \mathbf{r}_M \cdot \mathbf{V}) \end{bmatrix}
对于传统阵列,通常极化矢量 pk(θ,φ)=1p_k(\theta,\varphi) =1 一般省略。但是对于极化敏感阵列,不同载体的影响产生屏蔽效应,所以 pk(θ,φ)p_k(\theta,\varphi) 不能省略。

定义传统阵列方向矩阵为:A=[a(θ1,φ1), ,a(θK,φK)]A = \left[a(\theta_1,\varphi_1),\cdots,a(\theta_K,\varphi_K)\right]

参考文献


  1. 毫米波低复杂度 DOA 估计与波束成形技术的研究 ↩︎

展开阅读全文

没有更多推荐了,返回首页