# 天线阵列模型

## 3. 天线阵列模型1

### 3.1 均匀线阵

$\tau_m(\theta_i) = \frac{(m-1)d \sin \theta_i}{v}$

• 各天线阵元之间的互耦效应忽略不计，且阵元间距为最高频率源信号的半波长，即 $d=\frac{\lambda}{2}$

• 传播距离远大于阵列大小，即信号在介质中以平面波的形式到达阵列。

• 接收机各个通道拥有完全相同的特性。

$\mathbf{a}(\theta_i) = \left[1,e^{j\pi \sin \theta_i},e^{j2\pi \sin \theta_i},\cdots,e^{j(M-1)\pi \sin \theta_i} \right]^T$

%%

%%
updated by 2019/7/19

### 3.2 L 型阵

\begin{aligned} X &= A_xS+N_x \\ Y &= A_yS+N_y \end{aligned}

\begin{aligned} A_x &= \left[a_x(\theta_1,\varphi_1),\cdots,a_x(\theta_K,\varphi_K)\right] \\ A_y &= \left[a_y(\theta_1,\varphi_1),\cdots,a_y(\theta_K,\varphi_K)\right] \\ a_x(\theta_i,\varphi_i) &= \left[1,e^{-j\frac{2\pi}{\lambda}d \cos\theta_i \sin\varphi_i},\cdots,e^{-j\frac{2\pi}{\lambda}(M-1)d \cos\theta_i \sin\varphi_i}\right]^T \\ a_y(\theta_i,\varphi_i) &= \left[1,e^{-j\frac{2\pi}{\lambda}d \sin\theta_i \sin\varphi_i},\cdots,e^{-j\frac{2\pi}{\lambda}(M-1)d \sin\theta_i \sin\varphi_i}\right]^T \end{aligned}

### 3.3 均匀平面阵

\begin{aligned} \tau_{n,m}(\varphi_k,\theta_k) &= \frac{x_n\sin\varphi_k\cos\theta_k + y_m\sin\varphi_k\sin\theta_k}{v}\\ a_{n,m}(\varphi_k,\theta_k) &= \exp\left(-jw_0\tau_{n,m}(\varphi_k,\theta_k)\right) \\ X &= AS+N \\ S &= \left[s_1(t),\cdots,s_K(t)\right]^T \in \mathbb{C}^{K \times 1}\\ A &= \left[a(\theta_1,\varphi_1),\cdots,a(\theta_K,\varphi_K)\right] \in \mathbb{C}^{NM \times K} \end{aligned}

\begin{aligned} x_n^2+y_m^2 &= r^2 \\ x_n &= r \cos \theta_k \\ y_m &= r \sin \theta_k \end{aligned}

\begin{aligned} r&=r(\cos^2 \theta_k+\sin^2 \theta_k) \\ &=r \cos \theta_k \cdot \cos \theta_k + r \sin \theta_k \cdot \sin \theta_k \\ &=x_n \cos \theta_k+ y_m \sin \theta_k \end{aligned}

$x$ 轴对应的 $N$ 个阵元的方向矩阵和从 $y$ 轴对应的 $M$ 个阵元的方向矩阵为
\begin{aligned} A_x &= \left[a_x(\theta_1,\varphi_1),\cdots,a_x(\theta_K,\varphi_K)\right] \\ A_y &= \left[a_y(\theta_1,\varphi_1),\cdots,a_y(\theta_K,\varphi_K)\right] \\ a_x(\theta_i,\varphi_i) &= \left[1,e^{-j\frac{2\pi}{\lambda}d \cos\theta_i \sin\varphi_i},\cdots,e^{-j\frac{2\pi}{\lambda}(N-1)d \cos\theta_i \sin\varphi_i}\right]^T \\ a_y(\theta_i,\varphi_i) &= \left[1,e^{-j\frac{2\pi}{\lambda}d \sin\theta_i \sin\varphi_i},\cdots,e^{-j\frac{2\pi}{\lambda}(M-1)d \sin\theta_i \sin\varphi_i}\right]^T \end{aligned}

\begin{aligned} X &= AS+N \\ S &= \left[s_1(t),\cdots,s_K(t)\right]^T \in \mathbb{C}^{K \times 1}\\ A &= \left[a(\theta_1,\varphi_1),\cdots,a(\theta_K,\varphi_K)\right] \\ &= \begin{bmatrix} A_x D_1(A_y) \\ A_x D_2(A_y) \\ \vdots \\ A_x D_M(A_y) \end{bmatrix} \in \mathbb{C}^{NM \times K} \end{aligned}

### 3.4 均匀圆阵

$\tau_{m=1,i} = \frac{R \sin\varphi_i \cos\theta_i}{v}$

$\tau_{m,i} = \frac{R \sin\varphi_i \cos\left(\theta_i-\frac{2\pi(m-1)}{M}\right)}{v}$

\begin{aligned} A &= \left[a(\theta_1,\varphi_1),\cdots,a(\theta_K,\varphi_K)\right] \\ a(\theta_i,\varphi_i) &= \begin{bmatrix} \exp\left(-j2\pi R\sin\varphi_i \cos\left(\theta_i\right)\right) \\ \exp\left(-j2\pi R\sin\varphi_i \cos\left(\theta_i-\frac{2\pi}{M}\right)\right) \\ \vdots \\ \exp\left(-j2\pi R\sin\varphi_i \cos\left(\theta_i-\frac{2\pi(M-1)}{M}\right)\right) \end{bmatrix} \end{aligned}

### 3.5 任意三维阵列天线模型

$\mathbf{V} = \begin{bmatrix} \sin\varphi_i\cos\theta_i & \sin\varphi_i\sin\theta_i & \cos\varphi_i \end{bmatrix}^T$

$\tau_{m}(\theta_i,\varphi_i) = \frac{1}{v} \left(x_m \sin\varphi_i\cos\theta_i + y_m \sin\varphi_i\sin\theta_i+ z_m \cos\varphi_i\right)$

$\mathbf{a}(\theta_i,\varphi_i) = \begin{bmatrix} p_1(\theta_i,\varphi_i) \exp(j \frac{2\pi}{\lambda} \mathbf{r}_1 \cdot \mathbf{V}) \\ p_2(\theta_i,\varphi_i) \exp(j \frac{2\pi}{\lambda} \mathbf{r}_2 \cdot \mathbf{V}) \\ \vdots\\ p_M(\theta_i,\varphi_i) \exp(j \frac{2\pi}{\lambda} \mathbf{r}_M \cdot \mathbf{V}) \end{bmatrix}$

## 参考文献

1. 毫米波低复杂度 DOA 估计与波束成形技术的研究 ↩︎