(LXTML笔记)关于支持向量机[三]

上回讲到的矩阵 Q Q 中的每一个分量是

qn,m=ynymznTzm,

zTnzm=ϕ(xn)Tϕ(xm) z n T z m = ϕ ( x n ) T ϕ ( x m ) ,首先要对 xi x i 进行变换然后求内积,能不能将这两步骤合起来呢?(中心思想)
下面来一个栗子:
这里写图片描述
首先这里的 ϕ2(x) ϕ 2 ( x ) 变换,首先如果直接按照先变换后内积的思路的话就要 O(d2) O ( d 2 ) 的计算量,然后做内积也是需要 O(d2) O ( d 2 ) 的计算量,但是如果按照上图中所示,如果先求出 xTx x T x ′ ,然后再计算剩余的一个乘法和两个加法的话,计算量仅仅需要 O(d) O ( d )

我们记这样的操作 1+xTx+(xTx)2 1 + x T x ′ + ( x T x ′ ) 2 Kϕ2(x,x) K ϕ 2 ( x , x ′ ) 来表示,每一种变换对应一种核函数,对应地我们可以修改一下 b b ,还有最终的分类函数的表达式,如下图所示:
这里写图片描述
这里写图片描述

多项式核函数,配方(不是严格的配方)之后,我们可以得到

这里写图片描述

然后还有一种常用的核函数,我们称为高斯核,或者RBF(径向基函数)
这里写图片描述
它与多现实函数一个显著区别就是其中的phi实际上是一个无限维的多项式,它拥有更强的复杂处理能力。形式如下

这里写图片描述

实际上对于一堆给定的数据 xn x n 我们根本不知道他们的 ϕ ϕ 是什么,即不知道应该用什么核函数去处理,只能试一试
常用的三种核函数,线性(不变换),多项式,RBF的优缺点分别为:
这里写图片描述
这里写图片描述
这里写图片描述

最后提一句关于核函数
这里写图片描述
实际上核函数反映的是一种距离,内积本来就是一种距离(想象一下余弦定理),这很正常,内积诱导出范数,范数诱导出距离。那么问题来了是不是什么“距离”都能作为核函数呢,并不是的,考虑上图中的矩阵 K K ,实际上K=ZTZ,说明 K K 一定是一个半正定的矩阵,特别地,可以证明(困难的)这个不仅仅是一个必要条件,同时也是一个充分条件,即如果这样的矩阵K(xi,xj)(形式上和格兰姆矩阵类似)是半正定矩阵既可以用过来作为核函数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值