opencv
文学长
本人热爱编程,性格开朗
展开
-
Canny算子检测轮廓
1.概念及原理 (1)之前我们是对梯度大小进行阈值化以得到二值的边缘图像。但是这样做有两个缺点。其一是检测到的边缘过粗,难以实现物体的准确定位。其二是很难找到合适的阈值既能足够低于检测到所有重要边缘,又能不至于包含过多次要边缘,这就是Canny算法尝试解决的问题。 (2)Canny算子通常是基于Sobel算子,当然也可以使用其他梯度算子。其思想是使用一个低阈值一个高阈值来确定哪些点属于轮廓。低转载 2017-11-30 18:12:28 · 664 阅读 · 0 评论 -
OpenCV直线、轮廓的提取与描述
基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条、轮廓、块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以及做一些简单的基础应用。 一、Canny检测轮廓 在上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们不能兼顾到低阈值的翻译 2017-12-03 13:25:40 · 556 阅读 · 0 评论 -
OpenCV 重映射、仿射变换
通过重映射来表达每个像素的位置 (x,y) : g(x,y) = f ( h(x,y) ) 这里 g() 是目标图像, f() 是源图像, h(x,y) 是作用于 (x,y) 的映射方法函数.想象一下我们有一个图像 I , 我们想满足下面的条件作重映射:h(x,y) = (I.cols - x, y ),图像会按照 x 轴方向发生翻转. map_x.create( src原创 2017-12-13 11:14:22 · 288 阅读 · 0 评论