假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
int[] mem;
//解法1 递归法 (超时)
public int climbStairs(int n) {
if (n==0 || n==1){
return 1;
}
return climbStairs(n-1)+climbStairs(n-2);
}
//解法2 记忆搜索法
public int climbStairs2(int n) {
mem = new int[n+1];
mem[0] = 1;
mem[1] = 1;
return getStairs(n);
}
private int getStairs(int n) {
if (mem[n]==0){
mem[n] = getStairs(n-1)+getStairs(n-2);
}
return mem[n];
}
//解法3 动态规划
public int climbStairs3(int n) {
mem = new int[n+1];
mem[0] = 1;
mem[1] = 1;
for (int i = 2 ; i<=n ; i++){
mem[i] = mem[i-1]+mem[i-2];
}
return mem[n];
}