Investments Assignment

Problem1

设投资组合 P P P是由上述 n n n个风险证券构成的一个已知投资组合,其组合比例为 X P X_P XP,收益率为 r P r_P rP,期望收益率为 E ( r P ) E\left(r_P\right) E(rP),收益率标准差为 σ P \sigma_P σP

a )   \quad a)\, a)试求投资组合 Q Q Q的组合比例 X Q \textbf X_Q XQ,其中 X Q \textbf X_Q XQ为满足下述模型的解:

m i n   ( X Q − X P ) T V ( X Q − X P ) {\rm min}\,\left(\textbf X_Q-\textbf X_P\right)^T\textbf V\left(\textbf X_Q-\textbf X_P\right) min(XQXP)TV(XQXP)

s . t .   { ( X Q − X P ) T R = μ X Q T e = 1 s.t.\,\begin{cases}\left(\textbf X_Q-\textbf X_P\right)^T\textbf R=\mu\\\textbf X_Q^T\textbf e=1\end{cases} s.t.{(XQXP)TR=μXQTe=1
b )   \quad b)\, b)试求在 ( σ 2 ,   E ( r ) ) \left(\sigma^2,\,E\left(r\right)\right) (σ2,E(r))的坐标系中,通过坐标原点及全局最小方差组合   ( M V P )   \,\left(MVP\right)\, (MVP)的射线与上述 n n n个风险证券构成的投资组合边界曲线的交点 M M M(非全局最小方差组合)所对应的边界组合的方差 σ M 2 \sigma_M^2 σM2、期望收益 E ( X M ) E\left(X_M\right) E(XM)和组合比例 X M X_M XM.

c )   \quad c)\, c)证明在 a ) a) a)得出的解中,   ( X Q − X P )   \,\left(\textbf X_Q-\textbf X_P\right)\, (XQXP)   ( X M − X M V P )   \,\left(\textbf X_M-\textbf X_{MVP}\right)\, (XMXMVP)的倍数, ( X Q − X P ) T V ( X Q − X P ) \left(\textbf X_Q-\textbf X_P\right)^T\textbf V\left(\textbf X_Q-\textbf X_P\right) (XQXP)TV(XQXP) ( σ M 2 − σ M V P 2 ) \left(\sigma_M^2-\sigma_{MVP}^2\right) (σM2σMVP2)的倍数.


Solve1

a )   \quad \textbf a)\, a)
L = ( X Q − X P ) T V ( X Q − X P ) − λ 1 [ ( X Q − X P ) T R − μ ] − λ 2 ( X Q T e − 1 ) L=\left(\textbf X_Q-\textbf X_P\right)^T\textbf V\left(\textbf X_Q-\textbf X_P\right)-\lambda_1\left[\left(\textbf X_Q-\textbf X_P\right)^T\textbf R-\mu\right]-\lambda_2\left(\textbf X_Q^T\textbf e-1\right) L=(XQXP)TV(XQXP)λ1[(XQXP)TRμ]λ2(XQTe1)

\quad\quad
⟹ { ∂ L ∂ X = ( ∂ L ∂ X 1 , ⋯   , ∂ L ∂ X n ) T = 2 V ( X Q − X P ) − λ 1 R − λ 2 e = 0 ∂ L ∂ λ 1 = − [ ( X Q − X P ) T R − μ ] = 0 ∂ L ∂ λ 2 = − ( X Q T e − 1 ) = 0 \Longrightarrow\left\{\begin{aligned}&\frac{\partial L}{\partial\textbf X}=\left(\frac{\partial L}{\partial\textbf X_1},\cdots,\frac{\partial L}{\partial\textbf X_n}\right)^T=2\textbf V\left(\textbf X_Q-\textbf X_P\right)-\lambda_1\textbf R-\lambda_2\textbf e=\textbf 0\\&\frac{\partial L}{\partial \lambda_1}=-\left[\left(\textbf X_Q-\textbf X_P\right)^T\textbf R-\mu\right]=0\\&\frac{\partial L}{\partial \lambda_2}=-\left(\textbf X_Q^T\textbf e-1\right)=0\end{aligned}\right. XL=(X1L,,XnL)T=2V(XQXP)λ1Rλ2e=0λ1L=[(XQXP)TRμ]=0λ2L=(XQTe1)=0

\quad\quad 由第一个等式可得
X Q = λ 1 2 V − 1 R + λ 2 2 V − 1 e + X P \textbf X_Q=\frac{\lambda_1}{2}\textbf V^{-1}\textbf R+\frac{\lambda_2}{2}\textbf V^{-1}\textbf e+\textbf X_P XQ=2λ1V1R+2λ2V1e+XP

\quad\quad 分别带入第二个和第三个等式,得
μ = ( X Q − X P ) T R = ( λ 1 2 V − 1 R + λ 2 2 V − 1 e ) T R = λ 1 2 R T V − 1 R + λ 2 2 e T V − 1 R = λ 1 2 A + λ 2 2 B \begin{aligned}\mu&=\left(\textbf X_Q-\textbf X_P\right)^T\textbf R=\left(\frac{\lambda_1}{2}\textbf V^{-1}\textbf R+\frac{\lambda_2}{2}\textbf V^{-1}\textbf e\right)^T\textbf R\\&=\frac{\lambda_1}{2}\textbf R^T\textbf V^{-1}\textbf R+\frac{\lambda_2}{2}\textbf e^T\textbf V^{-1}\textbf R\\&=\frac{\lambda_1}{2}A+\frac{\lambda_2}{2}B\end{aligned} μ=(XQXP)TR=(2λ1V1R+2λ2V1e)TR=2λ1RTV1R+2λ2eTV1R=2λ1A+2λ2B

1 = X Q T e = ( λ 1 2 V − 1 R + λ 2 2 V − 1 e + X P ) T e = λ 1 2 R T V − 1 e + λ 2 2 e T V − 1 e + X P T e = λ 1 2 B + λ 2 2 C + 1 \begin{aligned}1&=\textbf X_Q^T\textbf e=\left(\frac{\lambda_1}{2}\textbf V^{-1}\textbf R+\frac{\lambda_2}{2}\textbf V^{-1}\textbf e+\textbf X_P\right)^T\textbf e\\&=\frac{\lambda_1}{2}\textbf R^T\textbf V^{-1}\textbf e+\frac{\lambda_2}{2}\textbf e^T\textbf V^{-1}\textbf e+\textbf X_P^T\textbf e\\&=\frac{\lambda_1}{2}B+\frac{\lambda_2}{2}C+1\end{aligned} 1=XQTe=(2λ1V1R+2λ2V1e+XP)Te=2λ1RTV1e+2λ2eTV1e+XPTe=2λ1B+2λ2C+1

\quad\quad
λ 1 2 A + λ 2 2 B = μ \frac{\lambda_1}{2}A+\frac{\lambda_2}{2}B=\mu 2λ1A+2λ2B=μ

λ 1 2 B + λ 2 2 C = 0 \frac{\lambda_1}{2}B+\frac{\lambda_2}{2}C=0 2λ1B+2λ2C=0

\quad\quad 解得
λ 1 = 2 C D μ \lambda_1=\frac{2C}D\mu λ1=D2Cμ

λ 2 = − 2 B D μ \lambda_2=-\frac{2B}D\mu λ2=D2Bμ

\quad\quad
X Q = λ 1 2 V − 1 R + λ 2 2 V − 1 e + X P = C D μ V − 1 R − B D μ V − 1 e + X P \begin{aligned}\textbf X_Q&=\frac{\lambda_1}{2}\textbf V^{-1}\textbf R+\frac{\lambda_2}{2}\textbf V^{-1}\textbf e+\textbf X_P\\&=\frac CD\mu\textbf V^{-1}\textbf R-\frac BD\mu\textbf V^{-1}\textbf e+\textbf X_P\end{aligned} XQ=2λ1V1R+2λ2V1e+XP=DCμV1RDBμV1e+XP

b )   \quad \textbf b)\, b)   ( 30 )   \,\left(30\right)\, (30),在 ( σ 2 ,   E ( r ) ) \left(\sigma^2,\,E\left(r\right)\right) (σ2,E(r))的坐标系中, M V P   MVP\, MVP坐标为
( 1 C ,   B C ) \left(\frac 1C,\,\frac{B}{C}\right) (C1,CB)
\quad\quad 则通过坐标原点及   M V P   \,MVP\, MVP的射线方程为
E ( r ) = B ⋅ σ 2 E\left(r\right)=B\cdot\sigma^2 E(r)=Bσ2

\quad\quad 投资组合边界曲线方程为
σ 2 1 C − ( E ( r ) − B C ) 2 D C 2 = 1 \frac{\sigma^2}{\frac{1}{C}}-\frac{\left(E\left(r\right)-\frac{B}{C}\right)^2}{\frac{D}{C^2}}=1 C1σ2C2D(E(r)CB)2=1

\quad\quad 联立上两式,得
σ 2 1 C − ( B ⋅ σ 2 − B C ) 2 D C 2 = 1 \frac{\sigma^2}{\frac{1}{C}}-\frac{\left(B\cdot\sigma^2-\frac{B}{C}\right)^2}{\frac{D}{C^2}}=1 C1σ2C2D(Bσ2CB)2=1

\quad\quad
B 2 C 2 D ( σ 2 − 1 C ) 2 = C ( σ 2 − 1 C ) \frac{B^2C^2}D\left(\sigma^2-\frac{1}{C}\right)^2=C\left(\sigma^2-\frac{1}{C}\right) DB2C2(σ2C1)2=C(σ2C1)

⟹ σ 2 − 1 C = D B 2 C \Longrightarrow\sigma^2-\frac{1}{C}=\frac{D}{B^2C} σ2C1=B2CD

⟹ σ M 2 = D + B 2 B 2 C = A C B 2 C = A B 2 \Longrightarrow\sigma_M^2=\frac{D+B^2}{B^2C}=\frac{AC}{B^2C}=\frac A{B^2} σM2=B2CD+B2=B2CAC=B2A

⟹ E ( r M ) = B ⋅ σ M 2 = A B \Longrightarrow E\left(r_M\right)=B\cdot\sigma_M^2=\frac AB E(rM)=BσM2=BA

\quad\quad 又由   ( 25 )   \,\left(25\right)\, (25)
X M = E ( r M ) C − B D V − 1 R − E ( r M ) B − A D V − 1 e = A B C − B D V − 1 R − A B B − A D V − 1 e = 1 B V − 1 R \begin{aligned}\textbf X_M&=\frac{E\left(r_M\right)C-B}D\textbf V^{-1}\textbf R-\frac{E\left(r_M\right)B-A}D\textbf V^{-1}\textbf e\\&=\frac{\frac ABC-B}D\textbf V^{-1}\textbf R-\frac{\frac ABB-A}D\textbf V^{-1}\textbf e\\&=\frac 1B\textbf V^{-1}\textbf R\end{aligned} XM=DE(rM)CBV1RDE(rM)BAV1e=DBACBV1RDBABAV1e=B1V1R
\quad\quad 综上,有
σ M 2 = A B 2 \sigma_M^2=\frac{A}{B^2} σM2=B2A

E ( r M ) = A B E\left(r_M\right)=\frac{A}{B} E(rM)=BA

X M = 1 B V − 1 R \textbf X_M=\frac 1B\textbf V^{-1}\textbf R XM=B1V1R
c )   \quad\textbf c)\, c)   b )   \,b)\, b)   ( 35 )   \,\left(35\right)\, (35)
X M − X M V P = 1 B V − 1 R − 1 C V − 1 e \textbf X_M-\textbf X_{MVP}=\frac 1B\textbf V^{-1}\textbf R-\frac 1C\textbf V^{-1}\textbf e XMXMVP=B1V1RC1V1e
\quad\quad 又由   a ) \,a) a)
X Q − X P = C D μ V − 1 R − B D μ V − 1 e = C B D μ ( 1 B V − 1 R − 1 C V − 1 e ) = C B D μ ( X M − X M V P ) \begin{aligned}\textbf X_Q-\textbf X_P&=\frac CD\mu\textbf V^{-1}\textbf R-\frac BD\mu\textbf V^{-1}\textbf e\\&=\frac {CB}D\mu\left(\frac 1B\textbf V^{-1}\textbf R-\frac 1C\textbf V^{-1}\textbf e\right)\\&=\frac {CB}D\mu\left(\textbf X_M-\textbf X_{MVP}\right)\end{aligned} XQXP=DCμV1RDBμV1e=DCBμ(B1V1RC1V1e)=DCBμ(XMXMVP)

\quad\quad   ( X Q − X P )   \,\left(\textbf X_Q-\textbf X_P\right)\, (XQXP)   ( X M − X M V P )   \,\left(\textbf X_M-\textbf X_{MVP}\right)\, (XMXMVP)的倍数

  \quad\quad\,   b )   \,b)\, b)   ( 36 )   \,\left(36\right)\, (36)

σ M 2 − σ M V P 2 = A B 2 − 1 C = A C − B 2 B 2 C = D B 2 C \sigma_M^2-\sigma_{MVP}^2=\frac A{B^2}-\frac 1C=\frac{AC-B^2}{B^2C}=\frac D{B^2C} σM2σMVP2=B2AC1=B2CACB2=B2CD

\quad\quad 又由   a ) \,a) a)

( X Q − X P ) T V ( X Q − X P ) = ( X Q − X P ) T V   C B D μ ( 1 B V − 1 R − 1 C V − 1 e ) = C B D μ ( X Q − X P ) T ( 1 B R − 1 C e ) = ( C B D μ ) 2 ( 1 B V − 1 R − 1 C V − 1 e ) T ( 1 B R − 1 C e ) = ( C B D μ ) 2 [ 1 B 2 R T V − 1 R − 1 B C ( R T V − 1 e + e T V − 1 R ) + 1 C 2 e T V − 1 e ] = ( C B D μ ) 2 ( A B 2 − 2 B B C + C C 2 ) = ( C B D μ ) 2 ⋅ A C − B 2 B 2 C = ( C B D μ ) 2 ⋅ D B 2 C = ( C B D μ ) 2 ( σ M 2 − σ M V P 2 ) = C D μ 2 \begin{aligned}\left(\textbf X_Q-\textbf X_P\right)^T\textbf V\left(\textbf X_Q-\textbf X_P\right)&=\left(\textbf X_Q-\textbf X_P\right)^T\textbf V\,\frac {CB}D\mu\left(\frac 1B\textbf V^{-1}\textbf R-\frac 1C\textbf V^{-1}\textbf e\right)\\&=\frac{CB}D\mu\left(\textbf X_Q-\textbf X_P\right)^T\left(\frac 1B\textbf R-\frac 1C\textbf e\right)\\&=\left(\frac{CB}D\mu\right)^2\left(\frac 1B\textbf V^{-1}\textbf R-\frac 1C\textbf V^{-1}\textbf e\right)^T\left(\frac 1B\textbf R-\frac 1C\textbf e\right)\\&=\left(\frac{CB}D\mu\right)^2\left[\frac 1{B^2}\textbf R^T\textbf V^{-1}\textbf R-\frac 1{BC}\left(\textbf R^T\textbf V^{-1}\textbf e+\textbf e^T\textbf V^{-1}\textbf R\right)+\frac 1{C^2}\textbf e^T\textbf V^{-1}\textbf e\right]\\&=\left(\frac{CB}D\mu\right)^2\left(\frac A{B^2}-\frac{2B}{BC}+\frac C{C^2}\right)=\left(\frac{CB}D\mu\right)^2\cdot\frac{AC-B^2}{B^2C}=\left(\frac{CB}D\mu\right)^2\cdot\frac D{B^2C}\\\\&=\left(\frac{CB}D\mu\right)^2\left(\sigma_M^2-\sigma_{MVP}^2\right)=\frac CD\mu^2\end{aligned} (XQXP)TV(XQXP)=(XQXP)TVDCBμ(B1V1RC1V1e)=DCBμ(XQXP)T(B1RC1e)=(DCBμ)2(B1V1RC1V1e)T(B1RC1e)=(DCBμ)2[B21RTV1RBC1(RTV1e+eTV1R)+C21eTV1e]=(DCBμ)2(B2ABC2B+C2C)=(DCBμ)2B2CACB2=(DCBμ)2B2CD=(DCBμ)2(σM2σMVP2)=DCμ2

\quad\quad   ( X Q − X P ) T V ( X Q − X P ) \,\left(\textbf X_Q-\textbf X_P\right)^T\textbf V\left(\textbf X_Q-\textbf X_P\right) (XQXP)TV(XQXP) ( σ M 2 − σ M V P 2 ) \left(\sigma_M^2-\sigma_{MVP}^2\right) (σM2σMVP2)的倍数


Problem2

已知风险证券 A A A B B B C C C的相关数据如下:

证券收益率期望收益率标准差
A A A r A r_A rA μ A \mu_A μA σ A \sigma_A σA
B B B r B r_B rB μ B \mu_B μB σ B \sigma_B σB
C C C r C r_C rC μ C \mu_C μC σ C \sigma_C σC

且三证券两两收益率的相关系数为0,现将证券 A A A B B B C C C构造投资组合,试求投资组合中   M V P   \,MVP\, MVP的组合比例及期望收益与方差。


Solve2

易得
V = ( σ A 2 0 0 0 σ B 2 0 0 0 σ C 2 ) \textbf V=\left(\begin{matrix}\sigma_A^2&0&0\\0&\sigma_B^2&0\\0&0&\sigma_C^2\end{matrix}\right) V=σA2000σB2000σC2

R = ( μ A μ B μ C ) \textbf R=\left(\begin{matrix}\mu_A\\\mu_B\\\mu_C\end{matrix}\right) R=μAμBμC

e = ( 1 1 1 ) \textbf e=\left(\begin{matrix}1\\1\\1\\\end{matrix}\right) e=111

⟹ V − 1 = ( 1 σ A 2 0 0 0 1 σ B 2 0 0 0 1 σ C 2 ) \Longrightarrow\textbf V^{-1}=\left(\begin{matrix}\displaystyle\frac 1{\sigma_A^2}&0&0\\0&\displaystyle\frac 1{\sigma_B^2}&0\\0&0&\displaystyle\frac 1{\sigma_C^2}\end{matrix}\right) V1=σA21000σB21000σC21

⟹ B = R T V − 1 e = ( μ A μ B μ C ) ( 1 σ A 2 0 0 0 1 σ B 2 0 0 0 1 σ C 2 ) ( 1 1 1 ) = ( μ A μ B μ C ) ( 1 σ A 2 1 σ B 2 1 σ C 2 ) = μ A σ A 2 + μ B σ B 2 + μ C σ C 2 C = e T V − 1 e = ( 1 1 1 ) ( 1 σ A 2 0 0 0 1 σ B 2 0 0 0 1 σ C 2 ) ( 1 1 1 ) = ( 1 1 1 ) ( 1 σ A 2 1 σ B 2 1 σ C 2 ) = 1 σ A 2 + 1 σ B 2 + 1 σ C 2 \begin{aligned}\Longrightarrow B=\textbf R^T\textbf V^{-1}\textbf e&=\left(\begin{matrix}\mu_A&\mu_B&\mu_C\end{matrix}\right)\left(\begin{matrix}\displaystyle\frac 1{\sigma_A^2}&0&0\\0&\displaystyle\frac 1{\sigma_B^2}&0\\0&0&\displaystyle\frac 1{\sigma_C^2}\end{matrix}\right)\left(\begin{matrix}1\\1\\1\\\end{matrix}\right)\\&=\left(\begin{matrix}\mu_A&\mu_B&\mu_C\end{matrix}\right)\left(\begin{matrix}\displaystyle\frac 1{\sigma_A^2}\\\\\displaystyle\frac 1{\sigma_B^2}\\\\\displaystyle\frac 1{\sigma_C^2}\end{matrix}\right)\\&=\frac{\mu_A}{\sigma_A^2}+\frac{\mu_B}{\sigma_B^2}+\frac{\mu_C}{\sigma_C^2}\\\\C=\textbf e^T\textbf V^{-1}\textbf e&=\left(\begin{matrix}1&1&1\end{matrix}\right)\left(\begin{matrix}\displaystyle\frac 1{\sigma_A^2}&0&0\\0&\displaystyle\frac 1{\sigma_B^2}&0\\0&0&\displaystyle\frac 1{\sigma_C^2}\end{matrix}\right)\left(\begin{matrix}1\\1\\1\\\end{matrix}\right)\\&=\left(\begin{matrix}1&1&1\end{matrix}\right)\left(\begin{matrix}\displaystyle\frac 1{\sigma_A^2}\\\\\displaystyle\frac 1{\sigma_B^2}\\\\\displaystyle\frac 1{\sigma_C^2}\end{matrix}\right)\\&=\frac 1{\sigma_A^2}+\frac 1{\sigma_B^2}+\frac 1{\sigma_C^2}\end{aligned} B=RTV1eC=eTV1e=(μAμBμC)σA21000σB21000σC21111=(μAμBμC)σA21σB21σC21=σA2μA+σB2μB+σC2μC=(111)σA21000σB21000σC21111=(111)σA21σB21σC21=σA21+σB21+σC21

则由   ( 35 ) ∼ ( 37 ) \,(35)\sim(37) (35)(37) M V P   MVP\, MVP期望收益为
E ( r ) = B C = μ A σ A 2 + μ B σ B 2 + μ C σ C 2 1 σ A 2 + 1 σ B 2 + 1 σ C 2 E\left(r\right)=\frac BC=\frac{\displaystyle\frac{\mu_A}{\sigma_A^2}+\frac{\mu_B}{\sigma_B^2}+\frac{\mu_C}{\sigma_C^2}}{\displaystyle\frac 1{\sigma_A^2}+\frac 1{\sigma_B^2}+\frac 1{\sigma_C^2}} E(r)=CB=σA21+σB21+σC21σA2μA+σB2μB+σC2μC
方差为
σ 2 = 1 C = 1 1 σ A 2 + 1 σ B 2 + 1 σ C 2 \sigma^2=\frac 1C=\frac 1{\displaystyle\frac 1{\sigma_A^2}+\frac 1{\sigma_B^2}+\frac 1{\sigma_C^2}} σ2=C1=σA21+σB21+σC211
组合比例为
X = V − 1 e C = ( 1 σ A 2 0 0 0 1 σ B 2 0 0 0 1 σ C 2 ) ( 1 1 1 ) C = ( 1 σ A 2 C 1 σ B 2 C 1 σ C 2 C ) = ( 1 σ A 2 1 σ A 2 + 1 σ B 2 + 1 σ C 2 1 σ B 2 1 σ A 2 + 1 σ B 2 + 1 σ C 2 1 σ C 2 1 σ A 2 + 1 σ B 2 + 1 σ C 2 ) T \begin{aligned}\textbf X=\frac{\textbf V^{-1}\textbf e}C&=\frac{\left(\begin{matrix}\displaystyle\frac 1{\sigma_A^2}&0&0\\0&\displaystyle\frac 1{\sigma_B^2}&0\\0&0&\displaystyle\frac 1{\sigma_C^2}\end{matrix}\right)\left(\begin{matrix}1\\1\\1\\\end{matrix}\right)}C=\left(\begin{matrix}\displaystyle\frac{1}{\sigma_A^2 C}\\\\\displaystyle\frac{1}{\sigma_B^2 C}\\\\\displaystyle\frac{1}{\sigma_C^2 C}\end{matrix}\right)\\\\&=\left(\begin{matrix}\displaystyle\frac {\displaystyle\frac{1}{\sigma_A^2}}{\displaystyle\frac 1{\sigma_A^2}+\frac 1{\sigma_B^2}+\frac 1{\sigma_C^2}}&\displaystyle\frac {\displaystyle\frac{1}{\sigma_B^2}}{\displaystyle\frac 1{\sigma_A^2}+\frac 1{\sigma_B^2}+\frac 1{\sigma_C^2}}&\displaystyle\frac {\displaystyle\frac{1}{\sigma_C^2}}{\displaystyle\frac 1{\sigma_A^2}+\frac 1{\sigma_B^2}+\frac 1{\sigma_C^2}}\end{matrix}\right)^T\end{aligned} X=CV1e=CσA21000σB21000σC21111=σA2C1σB2C1σC2C1=σA21+σB21+σC21σA21σA21+σB21+σC21σB21σA21+σB21+σC21σC21T


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值