《算法导论》笔记&习题

2.算法入门

2.1插入排序

public void insertionSort(int[] array){
        for(int i=1;i<array.length;i++){
            int key = array[i];
            int j = i - 1;
            while(j > -1 && array[j] > key){
                array[j+1] = array[j];
                j--;
            }
            array[j+1] = key;
        }
    }

算法复杂度:O( n2 )

循环不变式-证明的三个步骤:

  1. 初始化:证明第一轮循环开始之前是正确的
  2. 保持:如果在某一轮循环开始之前是正确的,此轮循环之后依然正确
  3. 终止:循环结束证明正确

练习

2.1-3

public Integer linearFind(int[] array, int v){
    Integer r = null;
    for(int i=0;i<array.length;i++){
        if(array[i] == v){
            r = i;
            break;
        }
    }
    return r;
}

证明循环不变式:
1. 初始化:当循环开始之前,已搜索数组为空,Index为null,符合条件
2. 保持:在开始第k次循环之前,也就是检查第k-1个数的时候,前k-2个数中都没有v。如果第k-1个数为v,那么返回k-1,否则继续下一次的循环。这两种情况都是满足条件的
3. 终止:当第N次循环结束后,整个数组检查完毕

2.1-4

public int[] add(int[] a, int b[]){
    int[] r = new int[a.length+1];
    int carry = 0;
    for(int i=a.length-1;i>=0;i--){
        int temp = a[i] + b[i] + carry; 
        r[i+1] = temp % 2;
        carry = temp/2;
    }
    r[0] = carry;
    return r;
}

2.2 算法分析

算法复杂度的分析以来的模型是单处理机+RAM(Random Access Memory),指令逐条运行,无并行操作。
在假设每一条指令(+,-,*,/,移位)运算都消耗相同的时间的前提下,求出整个程序由给定的输入所需要的总运算数,就是时间复杂度。
为了便于比较不同算法的时间复杂度,只考虑最高次项,同时,当运算规模扩大时,最高次项的贡献最大。

习题

2.2-2

public void selectionSort(int[] a){
    for(int i=0;i<a.length-1;i++){
        int idx = i;//the index of the least number
        for(int j=i+1;j<a.length;j++){
            if(a[j] < a[idx]) idx = j;
        }
        int temp = a[i];
        a[i] = a[idx];
        a[idx] = temp;
    }
}

循环不变式为:第1~i-1个元素是排好序的,其他的元素比i-1大。
最差/最好时间复杂度均为: n2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值