2.算法入门
2.1插入排序
public void insertionSort(int[] array){
for(int i=1;i<array.length;i++){
int key = array[i];
int j = i - 1;
while(j > -1 && array[j] > key){
array[j+1] = array[j];
j--;
}
array[j+1] = key;
}
}
算法复杂度:O( n2 )
循环不变式-证明的三个步骤:
- 初始化:证明第一轮循环开始之前是正确的
- 保持:如果在某一轮循环开始之前是正确的,此轮循环之后依然正确
- 终止:循环结束证明正确
练习
2.1-3
public Integer linearFind(int[] array, int v){
Integer r = null;
for(int i=0;i<array.length;i++){
if(array[i] == v){
r = i;
break;
}
}
return r;
}
证明循环不变式:
1. 初始化:当循环开始之前,已搜索数组为空,Index为null,符合条件
2. 保持:在开始第k次循环之前,也就是检查第k-1个数的时候,前k-2个数中都没有v。如果第k-1个数为v,那么返回k-1,否则继续下一次的循环。这两种情况都是满足条件的
3. 终止:当第N次循环结束后,整个数组检查完毕
2.1-4
public int[] add(int[] a, int b[]){
int[] r = new int[a.length+1];
int carry = 0;
for(int i=a.length-1;i>=0;i--){
int temp = a[i] + b[i] + carry;
r[i+1] = temp % 2;
carry = temp/2;
}
r[0] = carry;
return r;
}
2.2 算法分析
算法复杂度的分析以来的模型是单处理机+RAM(Random Access Memory),指令逐条运行,无并行操作。
在假设每一条指令(+,-,*,/,移位)运算都消耗相同的时间的前提下,求出整个程序由给定的输入所需要的总运算数,就是时间复杂度。
为了便于比较不同算法的时间复杂度,只考虑最高次项,同时,当运算规模扩大时,最高次项的贡献最大。
习题
2.2-2
public void selectionSort(int[] a){
for(int i=0;i<a.length-1;i++){
int idx = i;//the index of the least number
for(int j=i+1;j<a.length;j++){
if(a[j] < a[idx]) idx = j;
}
int temp = a[i];
a[i] = a[idx];
a[idx] = temp;
}
}
循环不变式为:第1~i-1个元素是排好序的,其他的元素比i-1大。
最差/最好时间复杂度均为:
n2