机器学习中解决过拟合的方法

产生过拟合原因?

1、参数太多,模型复杂度高
2、样本中噪音数据较大,模型学习到了噪音中的特征
3、对于决策树模型。对决策树的生长没有合理的限制和修建
4、 对于神经网络模型。权值学习迭代次数足够多(overtraining),拟合了训练数据中的噪声和训练样例中没有代表性的特征。

解决方案:
1、降低模型复杂度
2、增大训练集,训练集增加之后就能学习到更多具有代表性的特征
3、增加正则项,减少参数,进一步降低模型复杂度
4、对于神经网络,采用dropout
5、对于决策树,采用earlystopping,模型对训练数据集迭代收敛之前停止,防止过拟合
6、采用ensemble。集成学习可以有效的减轻过拟合。bagging通过平均多个模型的结果,来降低模型的方差。boosting不仅可以减小偏差,还可以减小方差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值