在创建应用程序之前,首先启动ZooKeeper和Kafka代理,然后使用create topic命令在Kafka代理中创建自己的主题(这里我用Demo)。 之后,创建一个名为 SimpleProducer.java 的java类,然后键入以下代码。
//import util.properties packages
import java.util.Properties;
//import simple producer packages
import org.apache.kafka.clients.producer.Producer;
//import KafkaProducer packages
import org.apache.kafka.clients.producer.KafkaProducer;
//import ProducerRecord packages
import org.apache.kafka.clients.producer.ProducerRecord;
//Create java class named “SimpleProducer"
public class SimpleProducer {
public static void main(String[] args) throws Exception{
// Check arguments length value
if(args.length == 0){
System.out.println("Enter topic name");
return;
}
//Assign topicName to string variable
String topicName = args[0].toString();
// create instance for properties to access producer configs
Properties props = new Properties();
//Assign localhost id
props.put("bootstrap.servers", "localhost:9092");
//Set acknowledgements for producer requests.
props.put("acks", "all");
//If the request fails, the producer can automatically retry,
props.put("retries", 0);
//Specify buffer size in config
props.put("batch.size", 16384);
//Reduce the no of requests less than 0
props.put("linger.ms", 1);
//The buffer.memory controls the total amount of memory available to the producer for buffering.
props.put("buffer.memory", 33554432);
props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer
<String, String>(props);
for(int i = 0; i < 10; i++)
producer.send(new ProducerRecord<String, String>(topicName,
Integer.toString(i), Integer.toString(i)));
System.out.println("Message sent successfully");
producer.close();
}
}
编译 - 可以使用以下命令编译应用程序
javac -cp "D:/kafka_2.11-1.1.0/libs/*" *.java
执行 - 可以使用以下命令执行应用程序。
这里要cd到下文中根路径,在运行:
java -cp "D:/kafka_2.11-1.1.0/libs/*";. SimpleProducer Demo
输入:topic后跟自己建的主题名
D:\kafka_2.11-1.1.0\bin\windows>kafka-console-consumer.bat --zookeeper localhost:2181 -topic Demo -from-beginning
上文中,我们已经创建了一个发送消息到Kafka集群的生产者。 现在让我们创建一个消费者来消费Kafka集群的消息。 KafkaConsumer API用于消费来自Kafka集群的消息。 KafkaConsumer类的构造函数定义如下。
public KafkaConsumer(java.util.Map<java.lang.String,java.lang.Object> configs)
configs - 返回消费者配置的地图。
KafkaConsumer类具有下表中列出的以下重要方法。
S.No | 方法和说明 |
1 | public java.util.Set< TopicPar- tition> assignment() 获取由用户当前分配的分区集。 |
2 | public string subscription() 订阅给定的主题列表以获取动态签名的分区。 |
3 | public void sub-scribe(java.util.List< java.lang.String> topics,ConsumerRe-balanceListener listener) 订阅给定的主题列表以获取动态签名的分区。 |
4 | public void unsubscribe() 从给定的分区列表中取消订阅主题。 |
5 | public void sub-scribe(java.util.List< java.lang.String> topics) 订阅给定的主题列表以获取动态签名的分区。 如果给定的主题列表为空,则将其视为与unsubscribe()相同。 |
6 | public void sub-scribe(java.util.regex.Pattern pattern,ConsumerRebalanceLis-tener listener) 参数模式以正则表达式的格式引用预订模式,而侦听器参数从预订模式获取通知。 |
7 | public void as-sign(java.util.List< TopicPartion> partitions) 向客户手动分配分区列表。 |
8 | poll() 使用预订/分配API之一获取指定的主题或分区的数据。 如果在轮询数据之前未预订主题,这将返回错误。 |
9 | public void commitSync() 提交对主题和分区的所有子编制列表的最后一次poll()返回的提交偏移量。 相同的操作应用于commitAsyn()。 |
10 | public void seek(TopicPartition partition,long offset) 获取消费者将在下一个poll()方法中使用的当前偏移值。 |
11 | public void resume() 恢复暂停的分区。 |
12 | public void wakeup() 唤醒消费者。 |
ConsumerRecord API
ConsumerRecord API用于从Kafka集群接收记录。 此API由主题名称,分区号(从中接收记录)和指向Kafka分区中的记录的偏移量组成。 ConsumerRecord类用于创建具有特定主题名称,分区计数和< key,value>的消费者记录。 对。 它有以下签名。
public ConsumerRecord(string topic,int partition, long offset,K key, V value)
-
主题 - 从Kafka集群接收的使用者记录的主题名称。
-
分区 - 主题的分区。
-
键 - 记录的键,如果没有键存在null将被返回。
-
值 - 记录内容。
ConsumerRecords API
ConsumerRecords API充当ConsumerRecord的容器。 此API用于保存特定主题的每个分区的ConsumerRecord列表。 它的构造器定义如下。
public ConsumerRecords(java.util.Map<TopicPartition,java.util.List
<Consumer-Record>K,V>>> records)
-
TopicPartition - 返回特定主题的分区地图。
-
记录 - ConsumerRecord的返回列表。
ConsumerRecords类定义了以下方法。
S.No | 方法和描述 |
1 | public int count() 所有主题的记录数。 |
2 | public Set partitions() 在此记录集中具有数据的分区集(如果没有返回数据,则该集为空)。 |
3 | public Iterator iterator() 迭代器使您可以循环访问集合,获取或重新移动元素。 |
4 | public List records() 获取给定分区的记录列表。 |
配置设置
Consumer客户端API主配置设置的配置设置如下所示 -
S.No | 设置和说明 |
1 | 引导代理列表。 |
2 | group.id 将单个消费者分配给组。 |
3 | 如果值为true,则为偏移启用自动落实,否则不提交。 |
4 | 返回更新的消耗偏移量写入ZooKeeper的频率。 |
5 | session.timeout.ms 表示Kafka在放弃和继续消费消息之前等待ZooKeeper响应请求(读取或写入)多少毫秒。 |
SimpleConsumer应用程序
生产者应用程序步骤在此保持不变。 首先,启动你的ZooKeeper和Kafka代理。 然后使用名为 SimpleCon-sumer.java 的Java类创建一个 SimpleConsumer 应用程序,并键入以下代码。
import java.util.Properties;
import java.util.Arrays;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.ConsumerRecord;
public class SimpleConsumer {
public static void main(String[] args) throws Exception {
if(args.length == 0){
System.out.println("Enter topic name");
return;
}
//Kafka consumer configuration settings
String topicName = args[0].toString();
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer
<String, String>(props);
//Kafka Consumer subscribes list of topics here.
consumer.subscribe(Arrays.asList(topicName));
//print the topic name
System.out.println("Subscribed to topic " +topicName);
int i = 0;
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
// print the offset,key and value for the consumer records.
System.out.printf("offset = %d, key = %s, value = %s\n",
record.offset(), record.key(), record.value());
}
}
}
编译 - 可以使用以下命令编译应用程序。(先转到目录再编译)
D:\kafka_2.11-1.1.0\bin\windows\datalogskafka\Demo-0>javac -cp "D:/kafka_2.11-1.1.0/libs/*" SimpleConsumer.java
执行 - 可以使用以下命令执行应用程序(win是;. linux是:.)
D:\kafka_2.11-1.1.0\bin\windows\datalogskafka\Demo-0>java -cp "D:/kafka_2.11-1.1.0/libs/*";. SimpleConsumer Demo
输入 - 打开生成器CLI并向主题发送一些消息。 你可以把smple输入为\'Hello Consumer\'。
这里,打开生产者CLI操作是:
这里绕了很久,终于知道是怎么弄得了,在CLI中,打开的是producer的批处理:(记得主题不同来区分不同的producer)
D:\kafka_2.11-1.1.0\bin\windows>kafka-console-producer.bat --broker-list localhost:9092 --topic Demo
输出 - 以下是输出。
在刚才的consumer端显示出: