- 博客(12)
- 收藏
- 关注
原创 案例-Kaggle泰坦尼克号生存可视化分析
#设置ast_node_interactivity = "all"使得可以同时输出多条语句from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interactivity = "all"#导入需要的包import pandas as pdimport numpy as np...
2018-06-15 16:51:50 4496
原创 案例-Kaggle泰坦尼克号生存预测分析
数据采集和理解#设置ast_node_interactivity = "all"使得可以同时输出多条语句from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interactivity = "all"#导入包import pandas as pdimport numpy ...
2018-06-15 10:01:34 4813 2
原创 第七章数据清洗和准备
# 7.1处理缺失数据import pandas as pdimport numpy as npfrom numpy import nan as NAstring_data=pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])string_data.isnull()0 False1 False2...
2018-06-04 14:46:02 462
原创 python数据分析_kaggle电影数据分析案例
#导入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport json#导入数据movies=pd.read_csv(r'E:\python\data\tmdb_5000_movies.csv',sep=',')credit=pd.read_csv(r'e:\pyt...
2018-05-25 16:11:24 13395 13
原创 python正则表达式
正则表达式就是用事先定义好的字符及其组合,组成一个“规则字符串”,然后用它去过滤或匹配字符串。首先给出正则表达式的语法规则: re模块python自带re模块,提供对正则表达式的支持,下面分别介绍re支持的方法。re.compile利用re.compile生成一个pattern对象,pattern 可以理解为一个匹配模式,基于这个对象可以进行下一步的匹配,其语法为:re.compile(strin
2016-06-17 11:44:35 368
原创 pandas数据结构基础
SeriesSeries是一种类似于一维数组的对象,它由一组数据和与之相关的索引组成,创建一个简单的Series对象:>>> from pandas import Series>>> a=Series([3,4,-9,2])>>> a0 31 42 -93 2dtype: int64Series对象的索引在左边,值在右边,由于我们没有指定索引,所
2016-06-16 11:25:44 705
原创 numpy相关性分析
相关性分析相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。下面我们将使用两个股票的收盘价分析他们股票的相关性。 首先给出两个股票30天的收盘价数据,分别创建两个数组:>>> import numpy as np>>> from matplotlib.pyplot import plot>>> from matplotlib.pyplot
2016-06-09 11:36:29 18896
原创 numpy计算移动平均值
1.简单移动平均值简单移动平均线(simple moving average)通常用于分析时间序列上的数据。假设我们知道某个月的每日股票收盘价,现在我们来计算N个交易日股票收盘价的移动平均值。>>> import numpy as np>>> from matplotlib.pyplot import plot>>> from matplotlib.pyplot import show
2016-06-06 11:31:18 26896 3
原创 numpy常用函数
计算加权平均值例如要计算某个学生的加权成绩,权重是每门课程的学分。 首选我们创建两个数组,分别包含成绩和学分:>>> import numpy as np>>> grade=np.array([80,90,67,78,83])>>> w=np.array([2,3,2,4,3])接下来使用numpy.average函数计算加权成绩:>>> wgrade=np.averag
2016-06-03 11:35:39 2676
翻译 numpy读写文件
写文件操作我们创建一个元素均为1的数组,并将其保存到文件中。numpy.savetxt函数将数据存储到文件中,其中“one.txt”是我们要存储文件的位置,one是要保存的数组。>>> import numpy as np>>> one=np.ones((2,3),dtype=np.int)>>> np.savetxt("one.txt",one)读入CSV文件CSV(Comma-Separa
2016-06-03 10:22:38 14815
原创 numpy数据类型
numpy支持以下数据类型: 每一种数据类型均有对应的类型转换函数:>>> import numpy as np>>> np.float64(23)23.0>>> np.int8(9.0)9>>> np.bool(2)True>>> np.bool(2.0)True>>> np.bool(0)False>>> np.int(True)1>>> np.float(False
2016-06-03 09:34:50 647
原创 numpy基础操作
1.创建数组:创建数组的几种方式: >>> import numpy as np创建一维数组>>> a=np.array([1,2,3,4])>>> print a[1 2 3 4]>>> b=np.arange(5)>>> print b[0 1 2 3 4]创建二维数组>>> c=np.array([[1,2,3],[4,5,6]])>>> pr
2016-06-01 22:07:26 733
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人