微信小程序开发者工具基础库下载调试基础库失败的解决办法,填坑DNS问题。

微信小程序开发者工具基础库下载失败,获取失败怎么解决?

如下图:
在这里插入图片描述

先说解决办法:

第一步:打开站长工具查看res.servicewechat.com这个域名对应的ip

站长工具查Ip的地址是:http://tool.zhiduopc.com/ip 查询结果如下图:
在这里插入图片描述

结论:res.servicewechat.com这个域名对应的ip是:125.77.176.247

第二步:打开电脑本地的域名与ip映射文件hosts,添加res.servicewechat.com映射125.77.176.247**

首先打开文件hosts。路径通常为:C:\Windows\System32\drivers\etc

截图如下:

在这里插入图片描述

如果有C:\Windows\System32\drivers\etc路径但里面没有hosts文件,则新建一个。不会新建就自行百度查。

记事本打开hosts文件如下图:
在这里插入图片描述

在hosts文件底部加上:125.77.176.247 res.servicewechat.com

在这里插入图片描述

**

而后再打开微信开发者工具就可以看到基础库下载成功辣!!!!

**

在这里插入图片描述

原理

微信旗下部分域名dns服务器或者你所在的网络Dns服务器出现问题。大概率不是腾讯方面域名Dns服务器出现问题,所以你使用的dns服务器可能出现问题,并且由于缓存等原因你给你电脑手动设置DNS服务器可能也不好使。
而Dns服务器功能就是将域名解析成Ip,既然它不好使了,莫不如手动设置该域名的ip。
本地hosts文件的作用就是在你个人电脑操作系统层面讲域名和ip做映射,一一对应。
所以你设置完hosts文件后,你电脑发起的tcp、http请求如果是res.servicewechat.com域名就会自动请求该域名对应的ip,省去了dns这一个环节。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值