编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 True ;不是,则返回 False 。
示例:
输入:19 输出:true 解释: 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02
= 1
Hash
class Solution {
public:
int quadratic(int n)
{
int res=0;
while(n)
{
res+=(n%10)*(n%10);
n/=10;
}
return res;
}
bool isHappy(int n) {
int ans;
set<int> se;
while(1)
{
if(se.count(n))
return false;
if(n==1)
return true;
se.insert(n);
n=quadratic(n);
}
}
};
快慢指针
与相交链表环思路一样,如果有环的话快慢指针迟早会相遇
class Solution {
public:
int quadratic(int n)
{
int res=0;
while(n)
{
res+=(n%10)*(n%10);
n/=10;
}
return res;
}
bool isHappy(int n) {
int ans;
int slowRunner=n;
int fastRunner=quadratic(n);
while(fastRunner!=1&&fastRunner!=slowRunner)
{
slowRunner=quadratic(slowRunner);
fastRunner=quadratic(quadratic(fastRunner));
}
return fastRunner==1;
}
};