题目链接:
题目大意:
给出一个只包含1,0的序列,给出一种运算,规则如下:
1->1 = 1
0->1 = 1
1->1 = 1
问能否将当前序列通过添加符号编程结果为0的序列
题目分析:
这道题我们可以逆推,当最后一位是1时,无论怎么添加括号,也不能把最后包含1的部分变成0,而0作为第二个数又得不到0,所以以1结尾的一定不能构造
那么如果以0结尾的话,必须前面能够构造出1,才可以,因为如果前面构造出0与最后的0合并会导致最后一个0变为无效,等同于最后的1,而前面构造出1对后面的0没有影响,但是如果能够放到前面的话则必能导致前面能整体构造出1,因为第二个参数为1的运算结果都为1,所以如果倒数第二位是1的话直接有解,如果第二位不是1的,那么就是0,0可以消掉前面所有的1,而且遇到0,就能够造出1,只要构造出紧挨着最后末尾0的1,那么前面不管是什么,都可以导致最后结果为0
具体方法代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define MAX 100007
using namespace std;
int n;
int a[MAX];
int main ( )
{
while ( ~scanf ( "%d" , &n ) )
{
for ( int i = 0 ; i < n ; i++ )
scanf ( "%d" , &a[i] );
if ( a[n-1] == 1 )
{
puts ( "NO" );
continue;
}
if ( n == 1 )
{
puts( "YES" );
puts( "0" );
continue;
}
if ( a[n-2] == 1 )
{
puts("YES");
for ( int i = 0 ; i < n-1 ; i++ )
printf ( "%d->" , a[i] );
printf ( "%d\n" , a[n-1] );
continue;
}
if ( n== 2 )
{
puts("NO");
continue;
}
int i = n-3;
for (; i >= 0 ; i-- )
if ( !a[i] ) break;
if ( i < 0 )
{
puts( "NO" );
continue;
}
puts("YES");
for ( int j = 0 ; j < i ; j++ )
printf ( "%d->" , a[j] );
printf ("(%d->(" , a[i] );
//else printf ( "((" );
for ( int j = i+1 ; j <= n-3 ; j++ )
printf ( "%d->" , a[j] );
//printf ( "%d" , a[n-3] );
printf ( "%d)" , a[n-2] );
printf ( ")->%d\n" , a[n-1] );
}
}