题目大意:
这里有一个关于合法的括号序列的问题。
如果插入“+”和“1”到一个括号序列,我们能得到一个正确的数学表达式,我们就认为这个括号序列是合法的。例如,序列"(())()", "()"和"(()(()))"是合法的,但是")(", "(()"和"(()))("是不合法的。我们这有一种仅由“(”,“)”和“?”组成的括号序列,你必须将“?”替换成括号,从而得到一个合法的括号序列。
对于每个“?”,将它替换成“(”和“)”的代价已经给出,在所有可能的变化中,你需要选择最小的代价。
思路:先将所有的?换成右括号,设定计数器num记录左右括号个数,左括号num++,右括号num--。用一个优先级队列记录被更改的值,然后每次num<0 且队列不为空时,找到右括号比左括号代价多的最大位置,更新即可。若队列为空,记录,因为已经不可能完成匹配。
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <iomanip>
using namespace std;
//#pragma comment(linker, "/STACK:102400000,102400000")
#define maxn 200005
#define MOD 1000000007
#define mem(a , b) memset(a , b , sizeof(a))
#define LL long long
#define ULL long long
const long long INF=0x3fffffff;
string str;
struct node
{
int l , r , id;
int val;
bool friend operator <(node n1 , node n2)
{
return n1.val < n2.val;
}
}a[maxn] , tmp;
int dp[maxn];
int main()
{
while(cin >> str)
{
int id = 0;
int len = str.size();
LL ans = 0;
int num = 0 , flag = 0;
priority_queue<node>q;
while(!q.empty()) q.pop();
for(int i = 0 ; i < len ; i ++)
{
if(str[i] == '(') num++;
else if(str[i] == ')') num--;
else if(str[i] == '?')
{
scanf("%d %d" , &a[id].l , &a[id].r);
a[id].val = a[id].r - a[id].l;
a[id].id = i;
num--;
ans += a[id].r;
q.push(a[id]);
str[i] = ')';
id++;
}
if(num < 0)
{
if(!q.empty())
{
tmp = q.top();
q.pop();
}
else flag = 1;
ans -= tmp.val;
num += 2;
str[tmp.id] = '(';
}
}
if(flag || num != 0) cout << -1 << endl;
else
{
cout << ans << endl;
cout << str<< endl;
}
}
return 0;
}