NP问题练习题
8.20
In an undirected graph G=(V,E),we say D ⊆ V is a dominating set if every v∈V is either in D or adjacent to at least one member of D. In the DOMINATING SET problem,the input is a graph and a budget b, and the aim is to find a dominating set in the graph of size at most b,if one exists.Prove that this problem is NP-problem.
在无向图G =(V,E)中,如果每个v∈V在D中或与D的至少一个成员相邻,则D⊆V是支配集(dominating set)。在支配集问题中,输入是图和预算b,目标是在图形中找到一个主导的图,如果存在,最大为b。证明这个问题是NP问题。
答:可以将顶点覆盖问题归约到支配集问题。若要在图 G( V, E ) 中求得不大于 b 的一个顶点覆盖,可以先对图 G 做一个预处理:对每条边(u,v )∈E ,添加一个辅助顶点 w,及两条边(u,w )和 (v,w) ,如下图所示: