声明:原题目出自《算法概论》,解答部分为原创
Problem :
In an undirected graph G = (V, E), we say D ⊆ V is a dominating set if every v∈V is either in D or adjacent to at least one member of D. In the DOMINATING SET problem, the input is a graph and a budget b, and the aim is to find a dominating set in the graph of size at most b, if one exists. Prove that this problem is NP-complete.
Solution:
相关概念:
支配集(Dominating set):对一个无向图G(V,E),称 D ⊆ V 是图G的一个支配集,当且仅当对任意v∈V,要么v∈D,要么v至少与D中的一个顶点相邻。
顶点覆盖(Vertex Cover):对一个无向图G(V,E),称 S ⊆ V 是图G的一个顶点覆盖,当且仅当图G的任意一条边至少与S中的一个顶点邻接。
支配集问题(Dominating-set Problem):输入一个无向图G和预算b,若G存在支配集D且满足|D|<=b,则输出支配集D,否则输出“不存在满足条件的支配集”。
已知条件:<