[Algorithms] 证明支配集问题是NP完全问题

这篇博客证明了在无向图中,支配集问题(DOMINATING SET)是NP完全问题。通过将顶点覆盖问题规约到支配集问题,展示了支配集问题的复杂性,表明它在计算机科学的最复杂问题类别中占有一席之地。
摘要由CSDN通过智能技术生成

声明:原题目出自《算法概论》,解答部分为原创

Problem :

  In an undirected graph G = (V, E), we say D ⊆ V is a dominating set if every v∈V is either in D or adjacent to at least one member of D. In the DOMINATING SET problem, the input is a graph and a budget b, and the aim is to find a dominating set in the graph of size at most b, if one exists. Prove that this problem is NP-complete.

Solution:

相关概念:

  支配集(Dominating set):对一个无向图G(V,E),称 D V 是图G的一个支配集,当且仅当对任意v∈V,要么v∈D,要么v至少与D中的一个顶点相邻。

  顶点覆盖(Vertex Cover):对一个无向图G(V,E),称 S V 是图G的一个顶点覆盖,当且仅当图G的任意一条边至少与S中的一个顶点邻接。

  支配集问题(Dominating-set Problem):输入一个无向图G和预算b,若G存在支配集D且满足|D|<=b,则输出支配集D,否则输出“不存在满足条件的支配集”。

已知条件:<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值