- 博客(5)
- 收藏
- 关注
原创 实分析中重要定理证明(一)----可测集的本质与构造
定理 若EEE为RdRdR^d上的可测子集,那么,对所有ϵ>0ϵ>0\epsilon \gt 0: (1)存在开集OOO,E⊂OE⊂OE\subset O,且m(O−E)≤ϵm(O−E)≤ϵm(O-E)\leq \epsilon; (2)存在闭集FFF,FFF包含于EEE,且m(E−F)≤ϵm(E−F)≤ϵm(E-F)\leq \e
2018-08-24 10:28:01 2797
原创 傅里叶分析导论学习笔记(一)
傅里叶级数的基本性质1.卷积f,g integrable on R ,2π-periodic, their convolution f*g on [-π,π] is defined by(f∗g)(x)=12π∫π−πf(y)g(x−y)dy(f∗g)(x)=12π∫−ππf(y)g(x−y)dy(f*g)(x) = \frac{1}{2π}\int ^{\pi}_{-\pi}f...
2018-07-15 15:54:20 1216
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人