实分析中重要定理证明(一)----可测集的本质与构造

定理 若 E E R d 上的可测子集,那么,对所有 ϵ>0 ϵ > 0 :
(1)存在开集 O O , E O ,且 m(OE)ϵ m ( O − E ) ≤ ϵ ;
(2)存在闭集 F F , F 包含于 E E ,且 m ( E F ) ϵ
(3)若 m(E) m ( E ) 有限,存在一个紧集 K K , K E m(EK)ϵ m ( E − K ) ≤ ϵ
(4)若 m(E) m ( E ) 有限,存在一个有限并 F=Nj=1Qj F = ⋃ j = 1 N Q j , Qj Q j 为闭方体,使得 m(EF)ϵ m ( E △ F ) ≤ ϵ

证明:
(1)
由可测集定义,对所有 ϵ>0 ϵ > 0 ,存在开集 O O ,使得 E O ,且

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值