定理 若 E E 为
上的可测子集,那么,对所有 ϵ>0 ϵ > 0 :
(1)存在开集 O O ,
,且 m(O−E)≤ϵ m ( O − E ) ≤ ϵ ;
(2)存在闭集 F F ,
包含于 E E ,且
;
(3)若 m(E) m ( E ) 有限,存在一个紧集 K K ,
, m(E−K)≤ϵ m ( E − K ) ≤ ϵ ;
(4)若 m(E) m ( E ) 有限,存在一个有限并 F=⋃Nj=1Qj F = ⋃ j = 1 N Q j , Qj Q j 为闭方体,使得 m(E△F)≤ϵ m ( E △ F ) ≤ ϵ ;
证明:
(1)
由可测集定义,对所有 ϵ>0 ϵ > 0 ,存在开集 O O ,使得
,且