面试题 01.04. 回文排列-简单
题目描述:
给定一个字符串,编写一个函数判定其是否为某个回文串的排列之一。
回文串是指正反两个方向都一样的单词或短语。排列是指字母的重新排列。
回文串不一定是字典当中的单词。
题解:
哈希表存储字符出现次数,再遍历哈希表,只能由一个字符出现次数为奇数,否则不是回文串
代码(Go):
func canPermutePalindrome(s string) bool {
var dict = make(map[rune]int,len(s))
flag := 1
for _,v := range s{
if _,ok := dict[v];ok{
dict[v]++
}else{
dict[v] = 1
}
}
for _,v := range dict{
if v%2 != 0{
flag--
}
if flag < 0{
return false
}
}
return true
}
剑指 Offer 40. 最小的k个数-简单
题目描述:
输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
题解:
数据量不大,所以直接计数排序解决了,时间复杂度很低,就是空间复杂度比较高。感觉这个题可能是想考堆的,但是我知道堆的思想不知道go语言怎么写堆
代码(Go):
func getLeastNumbers(arr []int, k int) []int {
re := [10000]int{}
for _,v := range arr{
re[v]++
}
sce := []int{}
for i,v := range re{
for v != 0 && k != 0{
v--
sce = append(sce, i)
k--
}
}
return sce
}
860. 柠檬水找零-简单
题目描述:
在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
给你一个整数数组 bills ,其中 bills[i] 是第 i 位顾客付的账。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
题解:
ifelse大法,直接就能找到所有可能的情况,唯一要注意的一点就是收到20的时候优先找一张10一张5,因为5用的多,所以尽可能留着
代码(Go):
func lemonadeChange(bills []int) bool {
num5,num10 := 0,0
for _,v:= range bills{
if v == 5{
num5++
}
if v == 10{
if num5 > 0{
num5--
num10++
}else{
return false
}
}
if v == 20{
if num10 > 0 && num5 > 0{
num10--
num5--
}else if num5 > 2{
num5 -= 3
}else{
return false
}
}
}
return true
}
15.三数之和-中等
题目描述:
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
题解:
排序之后for循环确定一个数,双指针确定剩下两个数,可以达到O(n2)的时间复杂度
代码(Go):
func threeSum(nums []int) [][]int {
sort.Ints(nums)
i := 0
sce := [][]int{}
for nums[i] <= 0 && i <= len(nums) - 2{
if i > 0{
if nums[i] == nums[i - 1]{
i++
continue
}
}
j := i + 1
k := len(nums) - 1
need := -nums[i]
for j < k{
if nums[j] + nums[k] == need{
sce = append(sce,[]int{nums[i],nums[j],nums[k]})
j++
for nums[j] == nums[j - 1] && j < len(nums) - 1{
j++
}
k--
for nums[k] == nums[k + 1] && k > i{
k--
}
}else if nums[j] + nums[k] < need{
j++
for nums[j] == nums[j - 1] && j < len(nums) - 1{
j++
}
}else{
k--
for nums[k] == nums[k + 1] && k > i{
k--
}
}
}
i++
}
return sce
}
总结
今天的中等题不太好做,一开始想找时间复杂度更小的方法但是失败了,最后用双指针的方法各种判断条件一大堆改了半天