卷积神经网络-卷积层

卷积神经网络包含卷积层,利用二维互相关运算进行处理。互相关运算从左上角开始,通过输入数组与核数组的乘积累加得到输出。卷积层在图像处理如边缘检测中有应用,通过卷积核识别局部空间特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络是含有卷积层的神经网络。
通常,在卷积层中使用更加直观的互相关运算。
在这里插入图片描述
在二维互相关运算中,卷积窗口从输入数组最左上方开始,按从左往右,从上往下的顺序,一次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并就和,得到输出数组中相应位置的元素。
例如:
0x0 + 1x1 + 3x2 + 4x3 = 19

def corr2d(x,k):
    h, w = k.shape
    y = torch.zeros(x.shape[0] - h + 1, x.shape[1] - w + 1)
    for i in range(y.shape[0]):
        for j in range(y.shape[1]):
            y[i,j] = (x[i:i 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值