小飞龙程序员
想赢并不一定要有实力和本钱,最重要的是有信心和胆识,放弃,就一定会输,尝试还有一半的机会。
展开
-
paddleocr轴端盖项目部署
1.main_paddle.pyimport shutilfrom paddleocr import PaddleOCR, draw_ocrimport timeimport cv2import mathimport numpy as npimport os,jsonimport paddlefrom PIL import Image, ImageFont, ImageDrawimport warningswarnings.filterwarnings('ignore')warni原创 2024-04-11 00:46:34 · 241 阅读 · 0 评论 -
torch常用数据操作
torch的常用数据操作。原创 2023-04-01 14:41:46 · 178 阅读 · 0 评论 -
深度学习------pytorch实现猫狗数据集
代码】深度学习------pytorch实现猫狗数据集。原创 2022-08-18 20:48:12 · 418 阅读 · 0 评论 -
深度学习------pytorch实现划拳模型训练
本博客主要对划拳数据进行三分类之后,进行模型训练。原创 2022-08-03 13:06:56 · 226 阅读 · 0 评论 -
深度学习------pytorch实现cifar10数据集
代码】深度学习------pytorch实现cifar10数据集。原创 2022-08-03 13:06:08 · 338 阅读 · 0 评论 -
深度学习------戴口罩和不戴口罩
戴口罩与不戴口罩数据集二分类原创 2022-08-03 12:38:43 · 284 阅读 · 0 评论 -
深度学习------验证码识别
验证码识别原创 2022-07-13 22:02:28 · 407 阅读 · 0 评论 -
迁移学习模型训练和协方差矩阵
本博客对数据集进行读取,进行模型训练,通过计算精度,判断模型的好坏。方法一:方法二:原创 2022-07-13 21:59:46 · 190 阅读 · 0 评论 -
深度学习------不同方法实现resnet-18、resnet34
本博客通过tensorflow实现resnet18和resnet34模型,对于resnet模型有不同的写法,包括,sequence模型、类封装、自定义函数,而本博客主要用自定义函数和类封装实现resnet18和34,代码和图如下:本博客主要用的cifar10数据集,图片大小是32x32x3,训练模型精度不是很好,有待改进一下继续提高精度。流程图如下:2. resnet-343. resnet18和34本代码主要用类封装实现,通过传入参数,直接确定resnet的层数...原创 2022-07-13 21:58:00 · 682 阅读 · 0 评论 -
深度学习------不同方法实现Inception-10
本博客通过tensorflow实现inception10模型,对于inception10模型有不同的写法,包括,sequence模型、类封装、自定义函数,而本博客主要通过自定义函数和类封装实现inception10,代码和模块图如下:inception10流程图如下:方法一:方法二:2. 类方法实现inception10参考:......原创 2022-06-29 10:15:09 · 369 阅读 · 1 评论 -
深度学习------卷积(conv2D)底层
卷积底层实现原创 2022-06-22 11:21:39 · 413 阅读 · 0 评论 -
深度学习------不同方法实现vgg16
本博客通过tensorflow实现vgg-16模型,对于vgg-16模型有不同的写法,包括,sequence模型、类封装、自定义函数,而本博客主要对这三种写法做主要介绍,代码和图如下:该图图片大小为224x224x3通道的图片大小,本代码稍做修改,用32x32x3通道的图片为例,在卷积核和通道数不变的情况下训练的vgg-16模型。.........原创 2022-06-22 11:03:26 · 444 阅读 · 0 评论 -
深度学习------不同方法实现lenet-5模型
本博客通过tensorflow和pytorch实现lenet-5模型,对于lenet-5模型有不同的写法,包括,sequence模型、类封装、自定义函数,而本博客主要对这三种写法做主要介绍,代码和图如下:2. tensofflow通过类实现lenet-53. tensofflow通过自定义函数实现lenet-54. pytorch通过sequence实现lenet-54.1 mnist数据集4.2 cifar10数据集...原创 2022-06-22 10:46:29 · 134 阅读 · 0 评论 -
深度学习------神经网络迁移学习
import tensorflow as tfimport numpy as npfrom tensorflow import kerasfrom tensorflow.keras import layers,optimizers,losses,metrics#导入数据(x_train,y_train),(x_test,y_test)=keras.datasets.mnist.load_data()x_train, x_test = x_train.astype(np.float32) /原创 2022-03-07 22:49:18 · 1181 阅读 · 0 评论 -
深度学习------tensorflow2.0,keras实现线性回归、逻辑回归和标准神经网络
1. 线性回归1.1 一维的数据(单变量)from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Densex_data = [1, 2, 3]y_data = [1.1, 2.11, 3.09]# 创建模型model=Sequential()model.add(Dense(1,input_dim=1))# 配置模型model.compile(optimizer=RMSprop()原创 2022-02-23 20:20:17 · 747 阅读 · 0 评论 -
深度学习-------tensorflow线性回归、逻辑回归(二分类)
1. 线性回归(单特征)import tensorflow as tfimport numpy as npimport osos.environ['TF_CPP_MIN_LOG_LEVEL']='3'#1.定义数据集x_data = [1., 2., 3.]x_data=np.c_[x_data]y_data = [1.1, 2.11, 3.09]y_data=np.c_[y_data]#2.定义占位符x=tf.placeholder(dtype=tf.float32,shape=[原创 2022-01-10 17:02:06 · 514 阅读 · 0 评论 -
深度学习------pytorch,CNN:实现mnist,cifar10数据集
1.keras实现mnist数据集在这里插入代码片2.pytorch实现mnist数据集import torchfrom torch.autograd import Variableimport numpy as npfrom torchvision import datasets,transformsimport torch.nn.initimport warningsimport randomwarnings.filterwarnings('ignore')#读取数据集mni原创 2022-03-09 17:44:05 · 1223 阅读 · 0 评论 -
深度学习------tensorflow2.0,keras实现卷积神经网络(mnist、cifar2,cifar10:GoogleNet-22)
1. GoogleNet在这里插入代码片原创 2022-02-26 22:20:02 · 568 阅读 · 0 评论 -
深度学习------tensorflow卷积神经网络:cifar数据集
import pickleimport randomimport tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfo=open(r'E:\ana\envs\tf14\day10\cifar-100-python\train','rb')dict=pickle.load(fo,encoding='bytes')# print(dict)fo.close()imgarr=dict[b'data'].resha原创 2022-02-09 14:31:06 · 1424 阅读 · 0 评论 -
深度学习------pytorch线性回归、逻辑回归、神经网络
1. 线性回归import torchimport numpy as npfrom torch.autograd import Variableimport matplotlib.pyplot as pltdata=np.loadtxt('E:\deeplearning\deepinglearningtwo\day03-pytorch\data-01-test-score.csv',delimiter=',',dtype=np.float32)print(data)x=data[:,:-1]原创 2022-03-03 12:44:53 · 359 阅读 · 1 评论 -
深度学习------tensorflow2.0变量、张量、数据结构运算、自动微分机制
1. 张量和变量import tensorflow as tf# 常量值不可以改变,常量的重新赋值相当于创造新的内存空间c = tf.constant([1.0,2.0])print(c)print(id(c))c = c + tf.constant([1.0,1.0])# c.assign_add([1.0, 1.0]) # 常量不能重复赋值print(c)print(id(c))# 变量的值可以改变,可以通过assign, assign_add等方法给变量重新赋值v = tf.V原创 2022-02-22 19:13:49 · 796 阅读 · 0 评论 -
深度学习------卷积神经网络(CNN)、循环神经网络(RNN、LSTM)和递归神经网络知识点汇总
1. 卷积神经网络(CNN)卷积神经网络(CNN):是一类包含卷积计算且具有深度结构的前馈神经网络;由于卷积神经网络具有平移不变分类,因此也被称为平移不变人工神经网络。卷积神经网络是一种特殊的卷积神经网络模型,体现在两个方面:(1)神经元间的连接是非全连接的;(2)同一层中某些神经元之间的连接权重是共享的,即它的非全连接和权值共享的网络结构使之类似于生物神经网络,降低了模型的复杂度,减少了权值的数量。输入层:主要对原始图像数据进行预处理,包括去均值,归一化,pca.卷积层:提取特征池化层:(1)特原创 2022-02-05 13:50:17 · 4823 阅读 · 0 评论 -
深度学习------tensorflow2.0,keras实现卷积神经网络(LeNet-5、AlexNet-8、VGGNet-16)
1. leNet-5卷积神经网络实现mnist数据集方法一:from tensorflow.keras import layers,models,metrics,optimizers,activations,losses,utilsfrom tensorflow.keras.layers import Conv2D,MaxPooling2D,Dense,Dropout,BatchNormalization,Flattenfrom tensorflow.keras.utils import to_ca原创 2022-02-26 22:19:25 · 830 阅读 · 0 评论 -
深度学习------用NN、CNN、RNN神经网络实现mnist数据集处理
1. mnist数据集实现神经网络在这里插入代码片2. mnist数据集实现卷积神经网络# 1.运用卷积神经网络完成mnist数据集处理(40分)# 1、导包import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfrom tensorflow.examples.tutorials.mnist import input_data# 2、加载数据mnist=input_data.read_data_s原创 2022-02-13 20:30:35 · 1412 阅读 · 0 评论 -
深度学习------循环神经网络(RNN和LSTM):mnist手写数据集
import tensorflow as tffrom tensorflow.contrib.layers import fully_connectedfrom tensorflow.examples.tutorials.mnist import input_data'''利用循环神经网络,完成手写体识别'''mnist = input_data.read_data_sets("MNIST_data")# mnist = input_data.read_data_sets(r"MNIST_d原创 2022-02-11 09:51:43 · 547 阅读 · 0 评论 -
深度学习------CNN实现验证码和猫狗数据集
卷积神经网络验证码# 卷积神经网络验证码版本import tensorflow as tfimport matplotlib.pyplot as pltimport osimport numpy as npimport randomfrom PIL import Imagetf.set_random_seed(123)## 获取数据集train_num=1000#训练集数量test_num=100#测试集数量img_height=60img_width=160char_nu原创 2022-02-10 15:19:47 · 795 阅读 · 0 评论 -
深度学习------tensorflow2.0,keras实现CNN(mnist、cifar2、cifar10:ResNet-34、ResNet-18)
1.ResNet-34卷积神经网络在这里插入代码片原创 2022-02-26 22:16:18 · 820 阅读 · 0 评论 -
深度学习------tensorflow2.0:RNN单词预测,句子预测,股票预测
1. 单词预测import tensorflow as tffrom tensorflow.keras.layers import Dense,Activationfrom tensorflow.keras.models import Sequentialfrom tensorflow.keras import utilsimport numpy as npsample = "hihello"# hihello==>hellohi# hihell==>ihello# 模型只能原创 2022-03-04 19:43:18 · 510 阅读 · 0 评论 -
深度学习------pytorch,RNN:句子预测,股票预测
1. torch股票预测import torchimport torch.nn as nnfrom torch.autograd import Variableimport numpy as npfrom sklearn.preprocessing import MinMaxScalerimport matplotlib.pyplot as plt# 2.使用pytorch实现股票预测模型处理# (1)数据处理data=np.loadtxt(r'E:\deeplearning\deepin原创 2022-03-09 17:44:22 · 1816 阅读 · 2 评论 -
深度学习------keras,torch对mnist,cifar2,cifar3,cifar10数据集的读取总结
1. cifar10读取2. cifar2读取def load_img(path): label=tf.constant(1,tf.int32) if tf.strings.regex_full_match(path,'.*automobile.*') else tf.constant(0,tf.int32) img=tf.io.read_file(path) img=tf.image.decode_jpeg(img) img=tf.image.resize(img,(3原创 2022-03-06 13:52:44 · 3407 阅读 · 0 评论 -
深度学习------tensorflow2.0:ResNet50调库实现mnist、cifar10、cifar3数据集
1. resnet-50调库实现mnist数据集import tensorflow as tffrom tensorflow.keras.applications.resnet50 import ResNet50from tensorflow.keras import datasetsimport matplotlib.pyplot as pltfrom tensorflow.keras import optimizers,lossesfrom tensorflow.keras.utils im原创 2022-03-05 15:38:37 · 3205 阅读 · 0 评论 -
深度学习------RNN基础
#手动实现RNN的实例import tensorflow as tfimport numpy as nptf.set_random_seed(777)n_inputs = 3 #每个样本3个特征n_neurons = 5 #隐藏状态,神经元个数X0 = tf.placeholder(tf.float32, [None, n_inputs])X1 = tf.placeholder(tf.float32, [None, n_inputs])###需要定义两个权重,一个是输入加上一时刻状态.原创 2022-02-10 15:25:56 · 1000 阅读 · 0 评论 -
深度学习------tensorflow:RNN单词预测,句子预测,股票预测,情感分类
1.单词预测import tensorflow as tffrom tensorflow.contrib.seq2seq import sequence_lossfrom tensorflow.contrib.layers import fully_connectedimport numpy as np# 使用tensorflow框架,利用循环神经网络训练字符序列,从“hihell”学习输出“ihello”。# (一)建立字典,有5个字符:h,i,e,l,o(8分)idx=['h','i',原创 2022-02-16 18:11:52 · 512 阅读 · 0 评论 -
深度学习------tensorflow神经网络:MNIST手写数字识别
1. 神经网络底层写mnist数据集import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport matplotlib.pyplot as pltfrom sklearn.preprocessing import StandardScaler# ①正确导入相关头文件的包。# ②通过对以上关于mnist数据的分析,自动加载。mnist=input_data.read_data_se原创 2022-01-17 19:21:08 · 1069 阅读 · 0 评论 -
深度学习-------CNN卷积神经网络(卷积层、池化层、全连接层)
1. 卷积神经网络CNN卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于图像处理有出色表现。输入层,用于数据的输入。卷积层(Convolutional layer):抽取图像特征激活函数(Activation function):进行非线性整合池化层(Pooling layer):减小特征图空间尺寸全连接层( Fully-Connected layer):将图像展开,进行分类操作输出层,原创 2022-01-18 20:57:02 · 3275 阅读 · 0 评论 -
深度学习----tensorflow神经网络(二分类)
1. 乳腺癌数据集import matplotlib.pyplot as pltimport osimport numpy as npimport tensorflow as tffrom sklearn.datasets import load_breast_cancerfrom sklearn.decomposition import PCAfrom sklearn.preprocessing import StandardScalerfrom sklearn.preprocessing原创 2022-01-11 20:25:58 · 877 阅读 · 0 评论 -
深度学习-------过拟合和欠拟合,梯度消失和梯度爆炸,优化器
1.梯度消失和梯度爆炸梯度消失:经过神经网络计算后,梯度衰减为0的情况梯度爆炸:经过神经网络计算后,梯度变得无限大,超过了运算范围梯度消失与梯度爆炸其实是一种情况,两种情况下梯度消失经常出现,一是在深层网络中,二是采用了不合适的损失函数,比如sigmoid。梯度爆炸一般出现在深层网络和权值初始化值太大的情况下。梯度消失:1.更换激活函数 sigmoid-relu2.残差学习 resnet3.batchnorm梯度爆炸1.梯度剪切2.正则化一般情况下,对于同一组训练数据,利用不同的神经网原创 2022-01-15 18:57:46 · 2441 阅读 · 1 评论 -
深度学习Keras实现CNN结构框架------LeNet、AlexNet、ZFNet、VGGNet、GoogleNet、ResNet
一. LeNet-5模型的结构图LeNet-5共有7层,不包含输入,每层都包含可训练参数(连接权重)。输入图像为32×32大小。这要比Mnist数据库(一个公认的手写数据库,大小应该是28×28)中最大的字母还大。这样做的原因是希望潜在的明显特征如笔画断电或角点能够出现在最高层特征监测子感受野的中心。首先,简要解释下上面这个用于文字识别的LeNet-5深层卷积网络:(1).输入图像是32×32的大小,过滤器的大小是5×5的,由于不考虑对图像的边界进行拓展(narrow CNN),则过滤器将有28×2原创 2022-02-02 00:25:26 · 611 阅读 · 1 评论 -
深度学习------tensorflow神经网络(多分类)
1.自定义数据集(三分类)import tensorflow as tfimport pandas as pdimport numpy as npfrom sklearn.datasets import load_irisfrom sklearn.preprocessing import StandardScaler,OneHotEncoderfrom sklearn.model_selection import train_test_splitimport matplotlib.pyplot原创 2022-01-12 23:08:31 · 753 阅读 · 0 评论 -
深度学习------神经网络(CNN、RNN)和激活函数(sigmoid、tanh、relu、softmax)
1.NN(神经网络)单个感知器的表达能力有限,它只能表达线性决策面(超平面)。如果我们把众多的感知器互联起来,就像人的大脑所做的那样,再将激活函数更换为非线性函数,我们就可以表达种类繁多的非线性曲面。2.CNN(卷积神经网络)卷积神经网络包括一维卷积神经网络、二维卷积神经网络以及三维卷积神经网络。一维卷积神经网络常应用于序列类的数据处理;二维卷积神经网络常应用于图像类文本的识别;三维卷积神经网络主要应用于医学图像以及视频类数据识别。卷积层(Convolution layer):提取图像特征池化原创 2022-01-07 16:20:27 · 1454 阅读 · 0 评论