题目:
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
上图为 8 皇后问题的一种解法。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例:
输入: 4
输出: [
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],
["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
解释: 4 皇后问题存在两个不同的解法。
分析:
dfs,用一维数组代表棋盘,每落下一个皇后前先校验,下到最后一行后把棋盘转换为list添加到结果集中
代码:
public List<List<String>> solveNQueens(int n) {
List<List<String>> res = new ArrayList<>();
int[] board = new int[n];
dfs(res, board, 0);
return res;
}
private void dfs(List<List<String>> res, int[] board, int depth) {
int n = board.length;
if (depth == n) {
res.add(board2List(board));
return;
}
for (int i = 0; i < n; i++) {
if (check(board, depth, i)) {
board[depth] = i;
dfs(res, board, depth + 1);
}
}
}
private List<String> board2List(int[] board) {
List<String> list = new ArrayList<>();
int n = board.length;
for (int i = 0; i < n; i++) {
int num = board[i];
StringBuffer sb = new StringBuffer();
for (int j = 0; j < n; j++) {
sb.append(j==num?"Q":".");
}
list.add(sb.toString());
}
return list;
}
private boolean check(int[] board, int depth, int num) {
for (int i = 0; i < depth; i++) {
if (board[i] == num || Math.abs(depth - i) == Math.abs(num - board[i]))
return false;
}
return true;
}
效率:
总结:
一次AC无调试,很满意