leetcode:51. N皇后

题目:

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

上图为 8 皇后问题的一种解法。

给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。

示例:

输入: 4
输出: [
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],

["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
解释: 4 皇后问题存在两个不同的解法。

分析:

dfs,用一维数组代表棋盘,每落下一个皇后前先校验,下到最后一行后把棋盘转换为list添加到结果集中

代码:

	public List<List<String>> solveNQueens(int n) {
		List<List<String>> res = new ArrayList<>();

		int[] board = new int[n];

		dfs(res, board, 0);

		return res;
	}

	private void dfs(List<List<String>> res, int[] board, int depth) {
		int n = board.length;
		if (depth == n) {
			res.add(board2List(board));
			return;
		}

		for (int i = 0; i < n; i++) {
			if (check(board, depth, i)) {
				board[depth] = i;
				dfs(res, board, depth + 1);
			}
		}

	}

	private List<String> board2List(int[] board) {
		List<String> list = new ArrayList<>();
		int n = board.length;
		for (int i = 0; i < n; i++) {
			int num = board[i];
			StringBuffer sb = new StringBuffer();
			for (int j = 0; j < n; j++) {
				sb.append(j==num?"Q":".");
			}
			list.add(sb.toString());
		}
		return list;
	}

	private boolean check(int[] board, int depth, int num) {
		for (int i = 0; i < depth; i++) {
			if (board[i] == num || Math.abs(depth - i) == Math.abs(num - board[i]))
				return false;
		}
		return true;
	}

效率:

在这里插入图片描述

总结:

一次AC无调试,很满意

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值