Ignatius and the Princess IV
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32767 K (Java/Others)Total Submission(s): 25883 Accepted Submission(s): 10938
Problem Description
"OK, you are not too bad, em... But you can never pass the next test." feng5166 says.
"I will tell you an odd number N, and then N integers. There will be a special integer among them, you have to tell me which integer is the special one after I tell you all the integers." feng5166 says.
"But what is the characteristic of the special integer?" Ignatius asks.
"The integer will appear at least (N+1)/2 times. If you can't find the right integer, I will kill the Princess, and you will be my dinner, too. Hahahaha....." feng5166 says.
Can you find the special integer for Ignatius?
"I will tell you an odd number N, and then N integers. There will be a special integer among them, you have to tell me which integer is the special one after I tell you all the integers." feng5166 says.
"But what is the characteristic of the special integer?" Ignatius asks.
"The integer will appear at least (N+1)/2 times. If you can't find the right integer, I will kill the Princess, and you will be my dinner, too. Hahahaha....." feng5166 says.
Can you find the special integer for Ignatius?
Input
The input contains several test cases. Each test case contains two lines. The first line consists of an odd integer N(1<=N<=999999) which indicate the number of the integers feng5166 will tell our hero. The second line contains the N integers. The input is terminated by the end of file.
Output
For each test case, you have to output only one line which contains the special number you have found.
Sample Input
5 1 3 2 3 3 11 1 1 1 1 1 5 5 5 5 5 5 7 1 1 1 1 1 1 1
Sample Output
3 5 1
题意:输入N 接下来输入N个数字
N必须为奇数
找出出现次数大于(N+1)/2的数字
第一次用C++的快排 sort
头文件是#include<algorithm>
sort()默认是从小到大排序
#include<cstdio>
#include<algorithm>
using namespace std;
int main (void)
{
int a,b[1000010];
while(~scanf("%d",&a))
{
for(int i=0; i<a; i++)
{
scanf("%d",&b[i]);
}
sort(b,b+a);//从小到大
printf("%d\n",b[(a+1)/2]);
}
return 0;
}