NMT平行语料划分数据集

本文介绍了如何将NMT平行语料库按照比例划分为训练、测试和验证集。首先随机打乱数据,然后进行数据划分,确保了数据集的合理分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标:

将数据集按比例划分为 train、test、val。

对平行语料处理后如下图所示:

步骤:

  1. 随机打乱数据集
  2. 划分数据集
  3. 划分平行语料

代码如下:

import os
import random


def data_split(config, file, train_ratio=0.98, shuffle=True):
    """
    :param config: 数据文件所在的文件夹名
    :param file: 要处理数据的文件名(全称)
    :param train_ratio: 训练集占比
    :param shuffle: 是否打乱
    :return: None
    """
    with open(os.path.join(config, file), 'r', encoding='utf-8') as fp:  # 用\拼接config与file
        lines = fp.read().strip().split('\n')
    n = len(lines)
    if shuffle:
        random.shuffle(lines)  # 随机打乱数据集

    train_len = int(n * train_ratio)
    val_len = int(n * (1 - train_ratio) / 2)

    train_data = li
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值