hihocoder笔记

hihocoer系列

p1364 奖券兑换

题目:

描述
小Hi在游乐园中获得了M张奖券,这些奖券可以用来兑换奖品。
可供兑换的奖品一共有N件。第i件奖品需要Wi张奖券才能兑换到,其
价值是Pi。
小Hi使用不超过M张奖券所能兑换到的最大奖品总价值是多少?

输入
第一行两个整数N,M。  
接下来N行,每行两个整数Wi,Pi。  
对于 50%的数据: 1≤N,M≤1000  
对于 100%的数据: 1≤N,M≤10e5,1≤Pi,Wi≤10。  

输出
一行一个整数,表示最大的价值。

分析:

0-1背包问题,时间复杂度O(NM),空间复杂度O(NM)

for(int i = 0;i <= M;i ++) 
    dp[0][i] = 0;
for(int i = 1;i <= N;i ++)
    for(int j = 0;j <= M;j ++)
        dp[i][j] = max(dp[i-1][j], dp[i-1][j-W[i]]+P[i]);

0-1背包问题,空间复杂度优化O(M)

for(int i = 0;i <= M;i ++)
    dp[i] = 0;
for(int i = 1;i <= N;i ++)
    for(int j = M;j >= 0;j --)
        dp[j] = max(dp[j], dp[j-W[i]]+P[i]);

由于1≤Pi,Wi≤10这个条件,此题0-1背包问题可以转换为多重背包问题
多重背包问题可以采用二进制优化。
定义多重背包问题为:
N件物品,第i件物品重量为Wi,价值为Pi,数量为Ci。求容量为M的背包可取物品的最大价值。
O(NMK)(K为物品的最大数量)的写法

for(int i = 0;i <= M;i ++)
    dp[0][i] = 0;
for(int i = 1;i <= N;i ++)
    for(int j = 0;j <= M;j ++)
        for(int k = 0;k <= C[i];k ++)
            dp[i][j] = max(dp[i][j], dp[i-1][j-W[i]*k]+P[i]*i);

二进制优化:
设t = logCi ,数量Ci可分解为 20+21+...+2t+(Ci2021...2t)
第i件物品应该取走的数目可表示为 b020+b121+...+bt2t+b(t+1)a(Ci2021...2t)
其中b为二进制变量
因此第i件物品的最佳取法变成了b的最佳取值,这又变成了0-1背包问题
转换过程具体代码如下

int count = 0;
int bitP[maxm];
int bitW[maxm];

for(int i = 1;i <= N;i ++){
    int k;
    for(k = 1;(k<<1) <= C[i];k <<= 1){
        bitP[count] = P[i]*k;
        bitW[count] = W[i]*k;
        count ++;
    }
    bitP[count] = P[i]*(C[i]-k+1);
    bitW[count] = W[i]*(C[i]-k+1);
    count ++; 
}   

代码

#include <iostream>
#include <stdio.h>
using namespace std;

#define maxm(a, b) ((a)>(b)?(a):(b))

#define MAXW 10
#define MAXP 10
#define MAXCOUNT 2000
#define MAXM 100000

int ticket[MAXW][MAXP];
int W[MAXCOUNT];
int P[MAXCOUNT];
int dp[MAXM + 1];

int n, m, count;

int main()
{
    cin>>n>>m;

    for(int i = 0;i < MAXW;i ++)
        for(int j = 0;j < MAXP;j ++)
            ticket[i][j] = 0;

    int w, p;
    for(int i = 0;i < n;i ++){
        scanf("%d %d", &w, &p);
        ticket[w-1][p-1] ++;
    }

    int k, count = 0;
    for(int i = 0;i < MAXW;i ++){
        for(int j = 0;j < MAXP;j ++){
            for(k = 1;(k<<1) <= ticket[i][j]; k <<= 1){
                W[count] = (i+1)*k;
                P[count] = (j+1)*k;
                count ++;
            }
            W[count] = (i+1)*(ticket[i][j] - k + 1);
            P[count] = (j+1)*(ticket[i][j] - k + 1);
            count ++;
        }
    }

    for(int i = 0;i <= m;i ++)
        dp[i] = 0;

    for(int i = 0;i < count;i ++){
        for(int j = m;j >= 0;j --){
            if(j >= W[i]){
                dp[j] = maxm(dp[j], dp[j-W[i]] + P[i]);
            }
        }
    }

    cout<<dp[m]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值