机器学习
ChaucerG
永怀敬畏之心、感恩之心
展开
-
【项目实践】车距+车辆+车道线+行人检测项目实践
1、项目流程的简介 项目的主题框架使用为Keras+OpenCV的形式实现,而模型的选择为基于DarkNet19的YOLO V2模型,权重为基于COCO2014训练的数据集,而车道线的检测是基于OpenCV的传统方法实现的。2、项目主题部分2.1、YOLO V2模型YoloV2的结构是比较简单的,这里要注意的地方有两个: 1.输出的是batchsiz...原创 2020-04-11 09:13:27 · 2889 阅读 · 7 评论 -
统计学习方法学习笔记9——隐马尔科夫模型(HMM原理推导分析与分词项目实践)
目录1.简介2.概率计算方法2.1、模型参数的介绍2.1.1、初始概率2.1.2、状态转移矩阵2.1.3、观测概率矩阵2.2、前向-后向算法2.2.1、前向算法2.2.2、后向算法2.2.3、前向算法与后向算法的关系3、HMM的训练/学习问题3.1、Baum-Welch算法3.2、Baum-Welch算法伪代码4、预测问题:Viterbi算...原创 2019-06-28 16:12:32 · 816 阅读 · 2 评论 -
统计学习方法笔记8——HMM(隐马尔科夫模型)之前向后向算法的推导
自己学习HMM时的一下推导过程,用word进行推导然后输出为png图片,希望大家一起学习,由于HMM学习实践比较久,所以后期的HMM的学习算法以及训练部分的算法和代码部分会以另外一篇blog形式进行记录,希望可以持续关注哈...原创 2019-06-28 10:17:54 · 520 阅读 · 0 评论 -
统计学习方法学习笔记7——提升方法(集成学习)
提升方法文章目录提升方法前言章节目录导读加法模型+前向分步算法提升方法AdaBoost算法提升方法的基本思路Adaboost算法算法8.1步骤AdaBoost例子例子8.1AdaBoost 误差分析AdaBoost 算法的解释前向分步算法算法8.2提升树提升树模型提升树算法算法8.3梯度提升(GBDT)算法8.4AdaBoost与SVM的关系AdaBoost与LR的关系参考前言章节目录提...原创 2019-06-14 19:50:31 · 352 阅读 · 0 评论 -
统计学习方法学习笔记6——支持向量机
https://blog.csdn.net/qq_24819773/article/details/86513166转载 2019-06-14 18:23:28 · 184 阅读 · 0 评论 -
统计学习方法学习笔记5—— 逻辑斯谛回归与最大熵模型
目录1.概述2.逻辑斯谛回归模型2.1.逻辑斯谛分布2.2.1.二线逻辑斯谛回归模型的条件概率分布2.3.多项逻辑斯谛回归2.3.1.多项逻辑斯谛回归模型2.3.2.二元推广2.4.对数线性模型2.5.模型参数估计3.最大熵模型3.1.信息论相关的概念3.1.1.信息量3.1.2.信息和概率的关系3.1.3.概率3.1.4.熵3.1....原创 2019-06-01 11:12:00 · 375 阅读 · 0 评论 -
统计学习方法学习笔记4——决策树模型
目录1.概述2.决策树的优缺点:2.1.决策树的优点:2.2.决策树的缺点:3.决策树算法模型3.1.特征选择的准则3.2.树的生成3.3.树的剪枝4.决策树在sklearn中的类4.1.分类4.2.回归5.书本案例sklearn实现1.概述决策树是一种用来分类和回归的无参监督学习方法,其目的是创建一种模型从数据特征中简单的决策规则来预测一个...原创 2019-05-30 20:46:21 · 717 阅读 · 0 评论 -
统计学习方法学习笔记3——朴素贝叶斯模型
朴素贝叶斯属于:概率模型、参数化模型、和生成模型目录1.朴素贝叶斯基本方法2.后验概率最大化的含义3.朴素贝叶斯算法:朴素贝叶斯python实现4.1:朴素贝叶斯sklearn实现作业4.1贝叶斯的优缺点:1.朴素贝叶斯基本方法2.后验概率最大化的含义3.朴素贝叶斯算法:朴素贝叶斯python实现4.1:class Navie_...原创 2019-05-27 21:12:47 · 344 阅读 · 0 评论 -
统计学习方法学习笔记2——KNN
K 近邻算法:输入:训练数据集 T = {(x1,y1), (x2,y2),...,(xn,yn)} 其中,xi为属于R的实例特征向量,yi是属于{c1,c2,...,ck}的实例类别实例特征向量为xi。 输出:实例 x 所属的类 y。 步骤: 1.根据给定的距离度量,在训练集 T 中找出与 x 最近邻的 k 个点,涵盖这 k 个点的 x 的领域记作 Nk(x); 2....原创 2019-05-25 10:54:24 · 283 阅读 · 0 评论 -
统计学习方法学习笔记1——感知机模型
1.感知机学习算法的原始形式输入:训练数据集T={(x1,y1),(x2,y2),...,(xn,yn)},其中xi属于R,yi属于{+1,-1},i=1,2,...,n;学习率h(0<h=<1) 输出:w,b;感知机模型f(x)=sign(w*x+b) 1、选取初值w0,b0; 2、在训练数据集中选取数据(xi,yi): 3、如果yi(w*xi+b)<=0...原创 2019-05-25 10:47:02 · 420 阅读 · 0 评论 -
主成分分析的推导——PCA
为什么PCA的提取特征一定是选取最大特征值对应的特征向量呢?下面是个人针对花书得到的忒大证明:参考书目:深度学习[M]. 古德费洛原创 2019-03-14 15:12:28 · 264 阅读 · 0 评论 -
3、机器学习基础知识——矩阵求导相关知识
1、标量关于标量 x 的求导: 2、向量关于标量 x 的求导:定义向量 Y: 向量 Y 关于标量 x 的导数就是 Y 的每个元素分别对 x 进行求导,于是可以得到: 此时,导数是 Y 向量的正切向量。2、矩阵 Y 关于标量 x 的求导:矩阵对标量的求导类似于向量关于标量的求导,也就是矩阵的每个元素分别对标量 x ...原创 2019-01-07 16:38:29 · 280 阅读 · 0 评论 -
1、机器学习基础知识——信息论相关
1、随机变量的熵:对于离散随机变量服从,其概率为,其熵定义为Entropy(x): 1注: (1)、熵用来表达所有信息量的期望; (2)、信息熵越大,包含的信息就越多,那么随机变量的不确定性就越大。2、连续变量的熵:对于连续变量x服从P(x)概率分布,其熵定义为Entropy(x): 3、随机变量的相对熵...原创 2019-01-02 21:25:42 · 580 阅读 · 0 评论 -
2、机器学习基础知识——范数
范数范数(Norm)是数学中的一种基本概念,在泛函分析中,范数是一种定义在赋范线性空间中的函数,满足相应条件后的函数都可以被称为范数,其中包括向量范数和矩阵范数。1、向量范数在泛函分析中,向量范数是衡量向量大小的一种度量方式。在形式上,向量范数是一个定义域为任何线性空间向量的函数,它把一个向量 X 映射为一个非负实数值R,即满足f:V —> R。从几何角度来说,向量 X 的...原创 2019-01-03 21:27:07 · 2089 阅读 · 0 评论