目标检测算法综述—— Two-Stage方法

1、概述 目标检测的任务是找出图像中所有感兴趣的目标(物体),确定它们的位置和大小,是机器视觉领域的核心问题之一。由于各类物体有不同的外观,形状,姿态,加上成像时光照,遮挡等因素的干扰,目标检测一直是机器视觉领域最具有挑战性的问题。 1.1、什么是目标检测 目标检测的任务是找出图像中所有感兴...

2019-08-18 11:22:56

阅读数 1

评论数 0

双线性汇合(bilinear pooling)在细粒度图像分析及其他领域的进展综述——SIGAI推荐

目录 1. 数学准备 1.1 符号 1.2 数学性质 1.3 双线性 2. 双线性汇合 2.1 细粒度分类中的双线性汇合 2.2 不同阶的汇合 3. 精简双线性汇合 3.1 PCA降维 3.2 近似核计算 3.3 低秩双线性分类器 4. 双线性汇合的其他应用 4.1 风格...

2019-07-26 17:03:47

阅读数 15

评论数 0

统计学习方法学习笔记9——隐马尔科夫模型(HMM原理推导分析与分词项目实践)

目录 1.简介 2.概率计算方法 2.1、模型参数的介绍 2.1.1、初始概率 2.1.2、状态转移矩阵 2.1.3、观测概率矩阵 2.2、前向-后向算法 2.2.1、前向算法 2.2.2、后向算法 2.2.3、前向算法与后向算法的关系 3、HMM的训练/学习问题 3.1、...

2019-06-28 16:12:32

阅读数 25

评论数 0

统计学习方法笔记8——HMM(隐马尔科夫模型)之前向后向算法的推导

自己学习HMM时的一下推导过程,用word进行推导然后输出为png图片,希望大家一起学习,由于HMM学习实践比较久,所以后期的HMM的学习算法以及训练部分的算法和代码部分会以另外一篇blog形式进行记录,希望可以持续关注哈 ...

2019-06-28 10:17:54

阅读数 15

评论数 0

Markdown使用语法

个人看到比较全的一个:https://blog.csdn.net/witnessai1/article/details/52551362

2019-06-18 14:16:20

阅读数 5

评论数 0

目标检测学习笔记——SSD以及改进模型DSSD的原理解读及SSD的Tensorflow代码实现(图文并茂)

个人学习路上的一些见解,以Blog的形式记录下来,加强自己的知识学习,同时也希望和大家共享,由于个人能力有限,难免会有错误的地方,希望各位大牛给与指证,小弟定进一步完善自己以及博客。

2019-06-15 19:00:36

阅读数 138

评论数 0

统计学习方法学习笔记7——提升方法(集成学习)

提升方法 文章目录提升方法前言章节目录导读加法模型+前向分步算法提升方法AdaBoost算法提升方法的基本思路Adaboost算法算法8.1步骤AdaBoost例子例子8.1AdaBoost 误差分析AdaBoost 算法的解释前向分步算法算法8.2提升树提升树模型提升树算法算法8.3梯度提升(G...

2019-06-14 19:50:31

阅读数 12

评论数 0

统计学习方法学习笔记6——支持向量机

https://blog.csdn.net/qq_24819773/article/details/86513166

2019-06-14 18:23:28

阅读数 5

评论数 0

目标检测学习笔记——Yolo v1原理解读及其Tensorflow代码实现(图文并茂)

个人学习过程中的一些理解和笔记,写出来希望和大家一起分享,由于个人能力有限,文中要是有错误的地方还望海涵,并可以指出,笔者努力学习继续改进Blog内容。 如果要转载请注明出处:https://mp.csdn.net/postedit/91435413

2019-06-11 18:44:08

阅读数 70

评论数 0

深度学习笔记1——卷积神经网络概述

目录 1.卷积神经网络特点概述 2.卷积神经网络在图像任务方面的优势概述 3.传统神经网络的缺点 3.1.庞大的参数 3.2.丢失像素间的信息 3.3.制约网络深度的发展 4.卷积神经网络的三大核心思想 4.1.局部感知 4.2.权值共享 4.3.下采样技术 5.可视化手写字...

2019-06-01 19:45:08

阅读数 18

评论数 0

统计学习方法学习笔记5—— 逻辑斯谛回归与最大熵模型

目录 1.概述 2.逻辑斯谛回归模型 2.1.逻辑斯谛分布 2.2.1.二线逻辑斯谛回归模型的条件概率分布 2.3.多项逻辑斯谛回归 2.3.1.多项逻辑斯谛回归模型 2.3.2.二元推广 2.4.对数线性模型 2.5.模型参数估计 3.最大熵模型 3.1.信息论相关的概念 ...

2019-06-01 11:12:00

阅读数 13

评论数 0

统计学习方法学习笔记4——决策树模型

目录 1.概述 2.决策树的优缺点: 2.1.决策树的优点: 2.2.决策树的缺点: 3.决策树算法模型 3.1.特征选择的准则 3.2.树的生成 3.3.树的剪枝 4.决策树在sklearn中的类 4.1.分类 4.2.回归 5.书本案例sklearn实现 1.概述 ...

2019-05-30 20:46:21

阅读数 13

评论数 0

统计学习方法学习笔记3——朴素贝叶斯模型

朴素贝叶斯属于:概率模型、参数化模型、和生成模型 目录 1.朴素贝叶斯基本方法 2.后验概率最大化的含义 3.朴素贝叶斯算法: 朴素贝叶斯python实现4.1: 朴素贝叶斯sklearn实现作业4.1 贝叶斯的优缺点: 1.朴素贝叶斯基本方法 2.后验概率最大化的含义 ...

2019-05-27 21:12:47

阅读数 16

评论数 0

统计学习方法学习笔记2——KNN

K 近邻算法: 输入:训练数据集 T = {(x1,y1), (x2,y2),...,(xn,yn)} 其中,xi为属于R的实例特征向量,yi是属于{c1,c2,...,ck}的实例类别实例特征向量为xi。 输出:实例 x 所属的类 y。 步骤: 1.根据给定的距离度量,在训...

2019-05-25 10:54:24

阅读数 7

评论数 0

统计学习方法学习笔记1——感知机模型

1.感知机学习算法的原始形式 输入:训练数据集T={(x1,y1),(x2,y2),...,(xn,yn)},其中xi属于R,yi属于{+1,-1},i=1,2,...,n;学习率h(0<h=<1) 输出:w,b;感知机模型f(x)=sign(w*x+b) ...

2019-05-25 10:47:02

阅读数 12

评论数 0

自动驾驶项目——方向盘角度和油门预测

自动驾驶项目——方向盘角度和油门预测 1、数据生成 数据来源是unity公司的模拟器。 2、数据增强 由于数据的不均匀性,有的角度多半是0,因此对数据进行删除操作,同时应用数据增强,水平翻转,图像剪切,亮度调整以及随机打乱顺序。 数据增强的代码: def horizontal_fli...

2019-05-24 10:17:03

阅读数 40

评论数 2

Tensorflow实现性别年龄检测项目——TFRecords文件的读取与训练

1、TFReords文件的读取代码 论文中对训练集合的图像进行了随机裁剪、亮度变化、以及对比度随机调整,同时也对数据进行了规范化处理,这样的预处理都增加了模型的鲁棒性,更加切合实际情况。 设备配置:显卡为GTX1050Ti,Anaconda3.5+python3.6.5+Tensorflow-...

2019-03-18 21:28:06

阅读数 67

评论数 0

Tensorflow实现性别年龄检测项目前奏——数据预处理(转换数据集为 TFRecords 格式)

Adience 数据集简介: 实例中的数据集为Adience数据集,Adience数据集包含26580张图片,总共含有2284个类,涉及的年龄范围有8个区间(0~2, 4~6, 8~13, 15~20, 25~32, 38~43, 48~53, 60~),并且这个数据集含有噪声、姿势、光照等变化...

2019-03-16 13:41:06

阅读数 69

评论数 0

主成分分析的推导——PCA

为什么PCA的提取特征一定是选取最大特征值对应的特征向量呢? 下面是个人针对花书得到的忒大证明: 参考书目:深度学习[M]. 古德费洛

2019-03-14 15:12:28

阅读数 19

评论数 0

Tensorflow实现循环神经网络——基于Fashion Mnist数据集

1、循环神经网络简介 循环神经网络主要用于自然语言处理(NLP),应用的一种网络模型,它不同与传统的前馈神经网络(FNN),循环神经网络在网络中添加了定性循环,使信号从一个神经元传递到另一个神经元,并不会马上消失,而是继续存活,也因此得到循环神经网络的名称。 循环神经网络解决方案为:隐藏层的输...

2019-03-14 15:07:40

阅读数 33

评论数 0

提示
确定要删除当前文章?
取消 删除