Surprise库使用总结

Surprise库

Surprise(Simple Python Recommendation System Engine)是scikit系列的一个基于Python的构建和分析推荐系统的工具库。下面按照构建推荐系统并进行分析的流程梳理一遍涉及到的模块。

1. 加载数据模块

关于加载数据主要有surprise.Dataset读取数据模块和surprise.Reader数据解析模块。数据来源有以下四种:

  1. 加载库内置的数据:Dataset.load_builtin(name),内建数据有‘ml-100k’, ‘ml-1m’和 ‘jester’,默认为’ml-100k’。
from surprise import SVD
from surprise import Dataset
from surprise import accuracy
from surprise.model_selection import KFold

# Load the movielens-100k dataset
data = Dataset.load_builtin('ml-100k')

# define a cross-validation iterator
kf = KFold(n_splits=3)

algo = SVD()

for trainset, testset in kf.split(data):

    # train and test algorithm.
    algo.fit(trainset)
    predictions = algo.test(testset)

    # Compute and print Root Mean Squared Error
    accuracy.rmse(predictions, verbose=True)
  1. pandas.DataFrame加载数据:Dataset.load_from_df(df, reader)dfpandas.DataFrame格式,三列对应user_iditem_idratingreader为读取文件时的格式,是一个Reader类,在这里只需要设置rating_scale评分范围。
import pandas as pd

from surprise import Dataset
from surprise import Reader

# Creation of the dataframe. Column names are irrelevant.
ratings_dict = {'itemID': [1, 1, 1, 2, 2],
                'userID': [9, 32, 2, 45, 'user_foo'],
                'rating': [3, 2, 4, 3, 1]}
df = pd.DataFrame(ratings_dict)

# A reader is still needed but only the rating_scale param is requiered.
reader = Reader(rating_scale=(1, 5))

# The columns must correspond to user id, item id and ratings (in that order).
data = Dataset.load_from_df(df[['userID', 'itemID', 'rating']], reader)
  • Reader:读取外部数据的时候需要用到,surprise.reader.Reader(name, line_format, sep, rating_scale, skip_line)
    • name:可以选择内建数据集名称,使用时会忽略其他参数
    • line_format:定义每行格式,默认空格分割;
    • sep:设置分隔符;
    • rating_scale:设置rating范围,格式为元组;
    • skip_line:默认为0。
  1. 从一个文件加载数据:Dataset.load_from_file(file_path, reader)file_path为数据集路径,reader为文件解析类,包括每行格式、分隔符、评分范围等。
from surprise import Dataset
from surprise import Reader

# path to dataset file
file_path = os.path.expanduser('~/.surprise_data/ml-100k/ml-100k/u.data')

# As we're loading a custom dataset, we need to define a reader. In the
# movielens-100k dataset, each line has the following format:
# 'user item rating timestamp', separated by '\t' characters.
reader = Reader(line_format='user item rating timestamp', sep='\t')

data = Dataset.load_from_file(file_path, reader=reader)
  1. 针对数据已经划分好的情况,加载多个文件:Dataset.load_from_folds(folds_file, reader)
from surprise import SVD
from surprise import Dataset
from surprise import Reader
from surprise import accuracy
from surprise.model_selection import PredefinedKFold

# path to dataset folder
files_dir = os.path.expanduser('~/.surprise_data/ml-100k/ml-100k/')

# This time, we'll use the built-in reader.
reader = Reader('ml-100k')

# folds_files is a list of tuples containing file paths:
# [(u1.base, u1.test), (u2.base, u2.test), ... (u5.base, u5.test)]
train_file = files_dir + 'u%d.base'
test_file = files_dir + 'u%d.test'
folds_files = [(train_file % i, test_file % i) for i in (1, 2, 3, 4, 5)]

data = Dataset.load_from_folds(folds_files, reader=reader)
pkf = PredefinedKFold()

algo = SVD()

for trainset, testset in pkf.split(data):

    # train and test algorithm.
    algo.fit(trainset)
    predictions = algo.test(testset)

    # Compute and print Root Mean Squared Error
    accuracy.rmse(predictions, verbose=True)

2. 模型训练前的数据划分模块

这部分方法都位于surprise.model_selection.split部分。

2.1 交叉验证数据划分

方法名说明
KFold(n_splits=5, random_state=None, shuffle=True)基本的K折交叉验证迭代器
LeaveOneOut(n_splits=5, random_state=None, min_n_ratings=0)留一法
PredefinedKFold使用Dataset.load_from_folds加载数据时使用
RepeatedKFold(n_splits=5, n_repeats=10, random_state=None)使用不同的随机数重复n次k折交叉验证
ShuffleSplit(n_splits=5, test_size=0.2, train_size=None, random_state=None, shuffle=True)随机训练集和测试集的基本交叉验证迭代器

2.2 训练集测试集划分

train_test_split(data, test_size=0.2, train_size=None, random_state=None, shuffle=True)


3 构建算法模块

3.1 记号说明

符号说明
R R R评分集
R t r a i n R_{train} Rtrain, R t e s t R_{test} Rtest, R ^ \hat R R^训练集,测试集,预测集
U U Uuser集合
u u u, v v vuser
I I Iitem集合
i i i, j j jitem
U i U_i Ui对item i有评分的user集合
U i j U_{ij} Uij同时对item i和j有评分的user集合
I u I_u Iuuser u评分过的item集合
I u v I_{uv} Iuvuser u和v共同评分过的item集合
r u i r_{ui} ruiuser u对item i的真实评分
r ^ u i \hat r_{ui} r^uiuser u对item i的估计评分
b u i b_{ui} buiuser u对item i的baseline评分, b u i = μ + b u + b i b_{ui}=\mu+b_u+b_i bui=μ+bu+bi
μ \mu μ所有评分的均值
μ u \mu_u μuuser u给出的所有评分的均值
μ i \mu_i μi打给item i的所有评分的均值
σ u \sigma_u σuuser u给出的所有评分的标准差
σ i \sigma_i σiitem i收到的所有评分的标准差
N i ( u ) k N_{i(u)}^k Ni(u)k给item i有评分的user u的k个近邻user集合,使用相似度指标计算得到
N u ( i ) k N_{u(i)}^k Nu(i)kuser u打过分的item i的k个近邻item集合,使用相似度指标计算得到

3.2 基于统计的算法

基于surprise.prediction_algorithms模块

  • 随机预测:random_pred.NormalPredictor
    假设训练集评分服从正态分布,根据训练集数据进行最大似然估计得到评分的均值 μ ^ \hat\mu μ^和标准差 σ ^ \hat\sigma σ^,构建正态分布 N ( μ , σ ) N(\mu,\sigma) N(μ,σ),由正态分布产生预测结果。
    μ ^ = ∑ r u i ∈ R t r a i n r u i ∣ R t r a i n ∣ \hat{\mu}=\frac{\sum_{r_{ui}\in{R_{train}}}r_{ui}}{|R_{train}|} μ^=RtrainruiRtrainrui
    σ ^ = ∑ ( r u i − μ ^ ) 2 ∣ R t r a i n ∣ \hat{\sigma}=\sqrt{\frac{\sum(r_{ui}-\hat{\mu})^2}{|R_{train}|}} σ^=Rtrain(ruiμ^)2
  • baseline:baseline_only.BaselineOnly(bsl_options={}, verbose=True)
    假设函数为 r u i = b u i = μ + b u + b i r_{ui}=b_{ui}=\mu+b_u+b_i rui=bui=μ+bu+bi,则需要最小化 ∑ r u i ∈ R t r a i n ( r u i − ( μ + b u + b i ) ) 2 + λ ( ∑ u b u 2 + ∑ i b i 2 ) \sum_{r_{ui}\in R_{train}}(r_{ui}-(\mu+b_u+b_i))^2+\lambda (\sum_u b_u^2+\sum_i b_i^2) ruiRtrain(rui(μ+bu+bi))2+λ(ubu2+ibi2),使用Stochastic Gradient Descent (SGD)Alternating Least Squares(ALS)进行求解。
    使用SGD时,损失函数为 ∑ r u i ∈ R t r a i n ( r u i − ( μ + b u + b i ) ) 2 + λ ( ∑ u b u 2 + ∑ i b i 2 ) \sum_{r_{ui}\in R_{train}}(r_{ui}-(\mu+b_u+b_i))^2+\lambda (\sum_u b_u^2+\sum_i b_i^2) ruiRtrain(rui(μ+bu+bi))2+λ(ubu2+ibi2)参数有:
参数说明默认值
reg损失函数的正则化参数 λ \lambda λ0.02
learning_rate学习率0.005
n_epochs迭代次数20
print('Using SGD')
bsl_options = {'method': 'sgd',
               'learning_rate': .00005,
               'n_epochs': 20
               }
algo = BaselineOnly(bsl_options=bsl_options)

使用ALS时,损失函数为 ∑ r u i ∈ R t r a i n ( r u i − ( μ + b u + b i ) ) 2 + λ 1 ∑ u b u 2 + λ 2 ∑ i b i 2 \sum_{r_{ui}\in R_{train}}(r_{ui}-(\mu+b_u+b_i))^2+\lambda_1\sum_u b_u^2+\lambda_2\sum_i b_i^2 ruiRtrain(rui(μ+bu+bi))2+λ1ubu2+λ2ibi2参数有:

参数说明默认值
reg_uitem的正则化参数 λ 1 \lambda_1 λ115
reg_iuser的正则化参数 λ 2 \lambda_2 λ210
n_epochsALS过程的迭代次数10
bsl_options = {'method': 'als',
               'n_epochs': 5,
               'reg_u': 12,
               'reg_i': 5
               }
algo = BaselineOnly(bsl_options=bsl_options)

3.3 基于近邻(协同过滤)的方法

3.3.1 相似度计算模块

sim_options={name, user_based, min_support ,shrinkage}

  • name表示相似度计算方法,有cosine, msd, pearson, pearson_baseline四种;
    • Cosine similarity
      c o s i n e _ s i m ( u , v ) = ∑ i ∈ I u v r u i r v i ∑ i ∈ I u v r u i 2 ∑ i ∈ I u v r v i 2 cosine\_sim(u,v)=\frac{\sum_{i\in{I_{uv}}}r_{ui}r_{vi}}{\sqrt{\sum_{i\in{I_{uv}}}r_{ui}^2}\sqrt{\sum_{i\in{I_{uv}}}r_{vi}^2}} cosine_sim(u,v)=iIuvrui2 iIuvrvi2 iIuvruirvi
    • Mean Squared Difference similarity
      m s d ( u , v ) = 1 ∣ I u v ∣ ∑ i ∈ I u v ( r u i − r v i ) 2 msd(u,v)=\frac{1}{|I_{uv}|}\sum_{i\in{I_{uv}}}(r_{ui}-r_{vi})^2 msd(u,v)=Iuv1iIuv(ruirvi)2
      m s d _ s i m ( u , v ) = 1 1 + m s d ( u , v ) msd\_sim(u,v)=\frac{1}{1+msd(u,v)} msd_sim(u,v)=1+msd(u,v)1
    • Pearson similarity
      p e a r s o n _ s i m ( u , v ) = ∑ i ∈ I u v ( r u i − μ u ) ( r v i − μ v ) ∑ i ∈ I u v ( r u i − μ u ) 2 ∑ i ∈ I u v ( r v i − μ v ) 2 pearson\_sim(u,v)=\frac{\sum_{i\in{I_{uv}}}(r_{ui}-\mu_u)(r_{vi}-\mu_v)}{\sqrt{\sum_{i\in{I_{uv}}}(r_{ui}-\mu_u)^2}\sqrt{\sum_{i\in{I_{uv}}}(r_{vi}-\mu_v)^2}} pearson_sim(u,v)=iIuv(ruiμu)2 iIuv(rviμv)2 iIuv(ruiμu)(rviμv)
    • Pearson baseline similarity:使用baseline b u i b_{ui} bui取代mean
      p e a r s o n _ b a s e l i n e _ s i m ( u , v ) = ∑ i ∈ I u v ( r u i − b u i ) ( r v i − b v i ) ∑ i ∈ I u v ( r u i − b u i ) 2 ∑ i ∈ I u v ( r v i − b v i ) 2 pearson\_baseline\_sim(u,v)=\frac{\sum_{i\in{I_{uv}}}(r_{ui}-b_{ui})(r_{vi}-b_{vi})}{\sqrt{\sum_{i\in{I_{uv}}}(r_{ui}-b_{ui})^2}\sqrt{\sum_{i\in{I_{uv}}}(r_{vi}-b_{vi})^2}} pearson_baseline_sim(u,v)=iIuv(ruibui)2 iIuv(rvibvi)2 iIuv(ruibui)(rvibvi)
      当评分矩阵十分稀疏时,使用下式计算以减少过拟合
      p e a r s o n _ b a s e l i n e _ s h r i n k _ s i m ( u , v ) = ∣ I u v ∣ − 1 ∣ I u v ∣ − 1 + s h r i n k a g e p e a r s o n _ b a s e l i n e _ s i m ( u , v ) pearson\_baseline\_shrink\_sim(u,v)=\frac{|I_{uv}|-1}{|I_{uv}|-1+shrinkage}pearson\_baseline\_sim(u,v) pearson_baseline_shrink_sim(u,v)=Iuv1+shrinkageIuv1pearson_baseline_sim(u,v)
  • user_based表示是否是基于用户的相似度,True表示基于用户的相似度,False表示基于物品的相似度;
  • min_support表示认为两个user或item具有相似性时具有的最少相同数量的item或user,数目小于min_support的user或item会被认为相似性为0;
  • shrinkage是在name=pearson_baseline时有用,默认值为100。
3.3.2 预测算法

knns.KNNBasic(k=40, min_k=1, sim_options={}, verbose=True):基本的基于物品or用户的协同过滤
r ^ u i = ∑ v ∈ N i ( u ) k s i m ( u , v ) × r v i ∑ v ∈ N i ( u ) k s i m ( u , v ) \hat r_{ui}=\frac{\sum_{v\in{N_{i(u)}^k}}sim(u,v)\times r_{vi}}{\sum_{v\in{N_{i(u)}^k}}sim(u,v)} r^ui=vNi(u)ksim(u,v)vNi(u)ksim(u,v)×rvi
knns.KNNWithMeans(k=40, min_k=1, sim_options={}, verbose=True):考虑用户/物品偏好的协同过滤
r ^ u i = μ u + ∑ v ∈ N i ( u ) k s i m ( u , v ) × ( r v i − μ v ) ∑ v ∈ N i ( u ) k s i m ( u , v ) \hat r_{ui}=\mu_u+\frac{\sum_{v\in{N_{i(u)}^k}}sim(u,v)\times (r_{vi}-\mu_v)}{\sum_{v\in{N_{i(u)}^k}}sim(u,v)} r^ui=μu+vNi(u)ksim(u,v)vNi(u)ksim(u,v)×(rviμv)
knns.KNNWithZScore(k=40, min_k=1, sim_options={}, verbose=True)考虑用户/物品偏好,并对用户/物品进行z-score归一化
r ^ u i = μ u + σ u ∑ v ∈ N i ( u ) k s i m ( u , v ) × ( r v i − μ v ) ÷ σ v ∑ v ∈ N i ( u ) k s i m ( u , v ) \hat r_{ui}=\mu_u+\sigma_u \frac{\sum_{v\in{N_{i(u)}^k}}sim(u,v)\times (r_{vi}-\mu_v)\div\sigma_v}{\sum_{v\in{N_{i(u)}^k}}sim(u,v)} r^ui=μu+σuvNi(u)ksim(u,v)vNi(u)ksim(u,v)×(rviμv)÷σv
knns.KNNBaseline(k=40, min_k=1, sim_options={}, bsl_options={}, verbose=True)基于baseline的协同过滤
r ^ u i = b u i + ∑ v ∈ N i ( u ) k s i m ( u , v ) × ( r v i − b v i ) ∑ v ∈ N i ( u ) k s i m ( u , v ) \hat r_{ui}=b_{ui}+\frac{\sum_{v\in{N_{i(u)}^k}}sim(u,v)\times (r_{vi}-b_{vi})}{\sum_{v\in{N_{i(u)}^k}}sim(u,v)} r^ui=bui+vNi(u)ksim(u,v)vNi(u)ksim(u,v)×(rvibvi)

3.4 基于矩阵分解的方法

  1. Simon Funk2016年参加Netflix Prize期间在博客公开了一个算法Funk-SVD,也称为Latent Factor Model。
    假设函数为 r ^ u i = q i T p u \hat r_{ui}=q_i^Tp_u r^ui=qiTpu,等同于概率矩阵分解Probabilistic Matrix Factorization
  2. matrix_factorization.SVD,考虑偏置项的LFM,也称为bias-SVD
    假设函数为 r ^ u i = μ + b u + b i + q i T p u \hat r_{ui}=\mu+b_u+b_i+q_i^Tp_u r^ui=μ+bu+bi+qiTpu
    构造损失函数为
    ∑ r u i ∈ R t r a i n ( r u i − r ^ u i ) 2 + λ ( b u 2 + b i 2 + ∣ ∣ q i ∣ ∣ 2 + ∣ ∣ p u ∣ ∣ 2 ) \sum_{r_{ui}\in {R_{train}}}(r_{ui}-\hat r_{ui})^2+\lambda(b_u^2+b_i^2+||q_i||^2+||p_u||^2) ruiRtrain(ruir^ui)2+λ(bu2+bi2+qi2+pu2)
    带入假设函数得 ∑ r u i ∈ R t r a i n ( r u i − ( μ + b u + b i + q i T p u ) ) 2 + λ ( b u 2 + b i 2 + ∣ ∣ q i ∣ ∣ 2 + ∣ ∣ p u ∣ ∣ 2 ) \sum_{r_{ui}\in {R_{train}}}(r_{ui}-(\mu+b_u+b_i+q_i^Tp_u))^2+\lambda(b_u^2+b_i^2+||q_i||^2+||p_u||^2) ruiRtrain(rui(μ+bu+bi+qiTpu))2+λ(bu2+bi2+qi2+pu2)
    使用SGD的迭代公式如下:
    b u = b u + γ ( r u i − r ^ u i − λ b u ) b_u = b_u + \gamma(r_{ui}-\hat r_{ui}-\lambda b_u) bu=bu+γ(ruir^uiλbu)
    b i = b i + γ ( r u i − r ^ u i − λ b i ) b_i = b_i + \gamma(r_{ui}-\hat r_{ui}-\lambda b_i) bi=bi+γ(ruir^uiλbi)
    q i = q i + γ ( ( r u i − r ^ u i ) p u − λ q i ) q_i = q_i + \gamma((r_{ui}-\hat r_{ui})p_u-\lambda q_i) qi=qi+γ((ruir^ui)puλqi)
    p u = p u + γ ( ( r u i − r ^ u i ) q i − λ p u ) p_u = p_u + \gamma((r_{ui}-\hat r_{ui})q_i-\lambda p_u) pu=pu+γ((ruir^ui)qiλpu)
    其中 γ \gamma γ是学习速率, λ \lambda λ是正则化系数。
    算法参数:
参数名说明默认值
n_factor设置的factor数目100
n_epochsSGD算法的迭代次数20
biased是否使用bias-SVD,True使用bias-SVD,False使用SVDTrue
lr_all所有参数的学习速率,也可以针对不同的参数设置不同的学习速率0.005
reg_all所有参数的正则化系数,也可以针对不同的参数设置不同的正则化系数0.02

返回 p u p_u pu q i q_i qi b u b_u bu b i b_i bi

  1. matrix_factorization.SVDpp
    前面的LFM模型并没有显式地考虑用户的历史行为对用户评分预测的影响。Koren在Netflix Prize比赛中提出了一个模型,将用户历史评分的物品加入到了LFM模型中,结合了基于item的邻域方法(item-CF)和LFM,称为SVD++。(论文:Factor in the Neigbhorhood: Scalable and Accurate Collaborative Filtering)
    假设函数为:
    r ^ u i = μ + b u + b i + q i T p u + 1 ∣ I u ∣ ∑ j ∈ I u w i j \hat r_{ui}=\mu+b_u+b_i+q_i^Tp_u+\frac{1}{|I_u|}\sum_{j\in I_u}w_{ij} r^ui=μ+bu+bi+qiTpu+Iu1jIuwij
    将物品相似度矩阵 w i j w_{ij} wij同样进行分解,得:
    r ^ u i = μ + b u + b i + q i T p u + 1 ∣ I u ∣ x i T ∑ j ∈ I u y j \hat r_{ui}=\mu+b_u+b_i+q_i^Tp_u+\frac{1}{|I_u|}x_i^T\sum_{j\in I_u}y_j r^ui=μ+bu+bi+qiTpu+Iu1xiTjIuyj
    为了缓解过拟合,令 x = q x=q x=q,得
    r ^ u i = μ + b u + b i + q i T ( p u + 1 ∣ I u ∣ ∑ j ∈ I u y j ) \hat r_{ui}=\mu+b_u+b_i+q_i^T(p_u+\frac{1}{|I_u|}\sum_{j\in I_u}y_j) r^ui=μ+bu+bi+qiT(pu+Iu1jIuyj)
    后面构造损失函数,以及算法的超参数与bias-SVD相似。
  2. matrix_factorization.NMF
    Non-negative Matrix Factorization (NMF),一种基于非负矩阵分解的协同过滤算法。假设函数为 r ^ u i = μ + b u + b i + q i T p u \hat r_{ui}=\mu+b_u+b_i+q_i^Tp_u r^ui=μ+bu+bi+qiTpu,与SVD的区别在于 q i q_i qi p u p_u pu的值在任何时候都是非负的。相关论文有:
参数名说明默认值
n_factor设置的factor数目15
n_epochsSGD算法的迭代次数50
biased是否使用偏置项False
reg_pu p u p_u pu的正则化系数0.06
reg_qi q i q_i qi的正则化系数0.06
reg_bu b u b_u bu的正则化系数,biased=True时有效0.02
reg_bi b i b_i bi的正则化系数,biased=True时有效0.02
lr_bu b u b_u bu的学习速率,biased=True时有效0.005
lr_bi b i b_i bi的学习速率,biased=True时有效0.005
init_lowfactor随机初始化的下界,必须大于等于00
init_highfactor随机初始化的上界1

4. 交叉验证和超参数优化

validation.cross_validate(algo, data, measures=[u'rmse', u'mae'], cv=None, return_train_measures=False, n_jobs=1, pre_dispatch=u'2*n_jobs', verbose=False)
对于给定的算法和数据运行交叉验证过程,返回正确性和花费时间的报告。

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import cross_validate

# Load the movielens-100k dataset (download it if needed),
data = Dataset.load_builtin('ml-100k')

# We'll use the famous SVD algorithm.
algo = SVD()

# Run 5-fold cross-validation and print results
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)

search.GridSearchCV(algo_class, param_grid, measures=[u'rmse', u'mae'], cv=None, refit=False, return_train_measures=False, n_jobs=1, pre_dispatch=u'2*n_jobs', joblib_verbose=0):网格搜索交叉验证

from surprise import SVD
from surprise import Dataset
from surprise.model_selection import GridSearchCV

# Use movielens-100K
data = Dataset.load_builtin('ml-100k')

param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005],
              'reg_all': [0.4, 0.6]}
gs = GridSearchCV(SVD, param_grid, measures=['rmse', 'mae'], cv=3)

gs.fit(data)

# best RMSE score
print(gs.best_score['rmse'])

# combination of parameters that gave the best RMSE score
print(gs.best_params['rmse'])

5.结果分析模块

  • 7
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值