罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个整数,将其转为罗马数字。输入确保在 1 到 3999 的范围内。
示例 1:
输入: 3
输出: "III"
示例 2:
输入: 4
输出: "IV"
示例 3:
输入: 9
输出: "IX"
示例 4:
输入: 58
输出: "LVIII"
解释: L = 50, V = 5, III = 3.
示例 5:
输入: 1994
输出: "MCMXCIV"
解释: M = 1000, CM = 900, XC = 90, IV = 4.
class Solution {
vector<string> Money={"I","V","X","L","C","D","M"};
public:
string intToRoman(int num) {
string res;
for(int i=0;num;i+=2,num/=10){
switch(num%10){//方法一:从右到左,用到% /,适用于范围不确定
case 1:res=Money[i]+res;break;
case 2:res=Money[i]+Money[i]+res;break;
case 3:res=Money[i]+Money[i]+Money[i]+res;break;
case 4:res=Money[i]+Money[i+1]+res;break;
case 5:res=Money[i+1]+res;break;
case 6:res=Money[i+1]+Money[i]+res;break;
case 7:res=Money[i+1]+Money[i]+Money[i]+res;break;
case 8:res=Money[i+1]+Money[i]+Money[i]+Money[i]+res;break;
case 9:res=Money[i]+Money[i+2]+res;break;
default:break;
}
}
return res;
}
};
//方法二:从左右到,用到-,速度更快,因为范围限定在1~3999,
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。
示例 1:
输入: "III"
输出: 3
示例 2:
输入: "IV"
输出: 4
示例 3:
输入: "IX"
输出: 9
示例 4:
输入: "LVIII"
输出: 58
解释: L = 50, V= 5, III = 3.
示例 5:
输入: "MCMXCIV"
输出: 1994
解释: M = 1000, CM = 900, XC = 90, IV = 4.
class Solution {
unordered_map<char,int> Money={
{'I',1},{'V',5},{'X',10},{'L',50},{'C',100},{'D',500},{'M',1000}
};
public:
int romanToInt(string s) {
int res=0,sSize=s.size();
for(int i=0;i<sSize;++i){
if(i<sSize-1&&Money[s[i]]<Money[s[i+1]])
res=res+Money[s[i+1]]-Money[s[i]],++i;
else
res+=Money[s[i]];
}
return res;
}
};
编写一个函数来查找字符串数组中的最长公共前缀。
如果不存在公共前缀,返回空字符串 ""。
示例 1:
输入: ["flower","flow","flight"]
输出: "fl"
示例 2:
输入: ["dog","racecar","car"]
输出: ""
解释: 输入不存在公共前缀。
说明:
所有输入只包含小写字母 a-z 。
class Solution {
public:
string longestCommonPrefix(vector<string>& strs) {
int sSize=strs.size();
if(sSize==0)return "";
int len=strs[0].size();
for(int i=1;i<sSize;++i)//找最短字符串长度
if(strs[i].size()<len)
len=strs[i].size();
for(int i=1;i<sSize;++i)
for(int j=0;j<len;++j)
if(strs[i][j]!=strs[0][j]){
len=j;
break;
}
return strs[0].substr(0,len);
}
};
给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
例如,给定数组 nums = [-1,2,1,-4], 和 target = 1.
与 target 最接近的三个数的和为 2. (-1 + 2 + 1 = 2).
class Solution {
public:
int threeSumClosest(vector<int>& nums, int target) {
int nSize=nums.size();
sort(nums.begin(),nums.end());
int diffMin=INT_MAX,res=0;
for(int i=0;i<nSize;++i){
int le=i+1,ri=nSize-1;
while(le<ri){
int a=nums[le]+nums[ri]+nums[i];
int temp=abs(a-target);
if(temp<diffMin){
diffMin=temp;
res=a;
}
if(a>target)
--ri;
else if(a<target)
++le;
else return res;
}
}
return res;
}
};
给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。
注意:
答案中不可以包含重复的四元组。
示例:
给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。
满足要求的四元组集合为:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>>res;
sort(nums.begin(),nums.end());
int nSize=nums.size();
for(int i=0;i<nSize-3;++i){
if(i>0&&nums[i]==nums[i-1])continue;
int t1=target-nums[i];
for(int j=i+1;j<nSize-2;++j){
if(j>i+1&&nums[j]==nums[j-1])continue;
int le=j+1,ri=nSize-1,t2=t1-nums[j];
while(le<ri)
if(le>j+1&&nums[le]==nums[le-1]||nums[le]+nums[ri]<t2)++le;
else if(ri<nSize-1&&nums[ri]==nums[ri+1]||nums[le]+nums[ri]>t2)--ri;
else res.push_back({nums[i],nums[j],nums[le++],nums[ri--]});
}
}
return res;
}
};