Vision GNN:An Image is Worth Graph of Nodes

这篇博客解析了ViG(Vision GNN)论文,介绍了一种通过将图像划分为16x16像素节点构建图的创新方法,用于跨模态图匹配任务。论文展示了如何用GNN处理视觉数据,涉及的开源实现来自华为、中科院和北京大学。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:http://arxiv.org/abs/2206.00272

开源地址(即将开源):
https://github.com/huawei-noah/CV-Backbones
https://gitee.com/mindspore/models

最近在看一些跨模态图匹配的工作,想找一些图构建的方法,今天恰好看到这篇ViG的工作,类似ViT 工作一样,可以将图像划分为patch,每16x16像素为一个Patch,也就是图数据中的一个节点,总共有196个节点,直接处理图像数据,很受吸引,这里分享了一个知乎的解读,便于自己理解。论文笔记(十六)Vision GNN: An Image is Worth Graph of Nodes 只使用GNN进行视觉任务 中科院华为北大22年6月论文 - 知乎

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值