divide and conquer
题目描述:
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
思路:
- 在含有n个元素的数组中找出出现次数超过⌊n/2⌋的元素,假设数组不为空而且这个数是一定存在的。
代码
- Moore voting alogrithm算法
每次从数组中找出一对不同的元素,将它们从数组中删除,直到遍历完整个数组。由于这道题已经说明一定存在一个出现次数超过一半的元素,所以遍历完数组后数组中一定会存在至少一个元素。将数组从i=0开始遍历,若该元素与当前记录的主元素相等,则主元素可以与其他元素抵消的个数t自加1,若该元素与当前记录的主元素不相等,则抵消一个主元素(即t自减1),若t=0,则表明当前的主元素已经抵消完了,此时假设当前遍历到的元素为主元素,并使该元素的t设为1,继续遍历;完成遍历后得到的majority就是主元素。
class Solution {
public:
int majorityElement(vector<int>& nums) {
int major = nums[0];
int i = 0;
int k = 0;
for (i = 0; i < nums.size(); i++) {
if (k == 0) {
major = nums[i];
k++;
} else if (nums[i] == major) {
k++;
} else if (nums[i] != major) {
k--;
}
}
return major;
}
};
- 分而治之
将数组从中间分成两组,分别找出两个子数组的major element为e1和e2,如果两者相等,返回其一;否则遍历整个数组,返回数量>n/2的元素。
边界条件:序列只有一个元素时,直接返回该元素。
class Solution {
public:
int majorityElement(vector<int>& nums) {
int size = nums.size();
if (size == 1) return nums[0];
vector<int> n1(nums.begin(), nums.begin()+size/2);
int m1 = majorityElement(n1);
vector<int> n2(nums.begin()+size/2, nums.end());
int m2 = majorityElement(n2);
if (m1 == m2) return m1;
int count = 0;
for (int i = 0; i < size; i++) {
if (nums[i] == m1) count++;
if (count > size/2) return m1;
}
return m2;
}
};