[leetcode]169. Majority Element

divide and conquer

题目描述:

Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.

思路:

  • 在含有n个元素的数组中找出出现次数超过⌊n/2⌋的元素,假设数组不为空而且这个数是一定存在的。

代码

  • Moore voting alogrithm算法
    每次从数组中找出一对不同的元素,将它们从数组中删除,直到遍历完整个数组。由于这道题已经说明一定存在一个出现次数超过一半的元素,所以遍历完数组后数组中一定会存在至少一个元素。将数组从i=0开始遍历,若该元素与当前记录的主元素相等,则主元素可以与其他元素抵消的个数t自加1,若该元素与当前记录的主元素不相等,则抵消一个主元素(即t自减1),若t=0,则表明当前的主元素已经抵消完了,此时假设当前遍历到的元素为主元素,并使该元素的t设为1,继续遍历;完成遍历后得到的majority就是主元素。
class Solution {
public:
     int majorityElement(vector<int>& nums) {
        int major = nums[0];
         int i = 0;
         int k = 0;
         for (i = 0; i < nums.size(); i++) {
             if (k == 0) {
                 major = nums[i];
                 k++;
             } else if (nums[i] == major) {
                 k++;
             } else if (nums[i] != major) {
                 k--;
             }
         }
         return major;
    }
};
  • 分而治之
    将数组从中间分成两组,分别找出两个子数组的major element为e1和e2,如果两者相等,返回其一;否则遍历整个数组,返回数量>n/2的元素。
    边界条件:序列只有一个元素时,直接返回该元素。
class Solution {
public:
     int majorityElement(vector<int>& nums) {
        int size = nums.size();
        if (size == 1) return nums[0];

         vector<int> n1(nums.begin(), nums.begin()+size/2);
         int m1 = majorityElement(n1);

         vector<int> n2(nums.begin()+size/2, nums.end());
         int m2 = majorityElement(n2);

        if (m1 == m2) return m1;
        int count = 0;
        for (int i = 0; i < size; i++) {
            if (nums[i] == m1) count++;
            if (count > size/2) return m1;
        }
        return m2;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值