犀牛7基本训练学习教程 Rhino 7 Essential Training

犀牛7基本训练学习教程 Rhino 7 Essential Training

MP4 |视频:h264,1280x720 |音频:AAC,44.1 KHz,2 Ch

技能水平:初级|语言:英语+中英文字幕(根据原英文字幕机译更准确) |时长:2h 9m |大小解压后:925 MB 含课程练习文件

云桥网络 平台获取教程!

Rhino是一个流行且易于使用的3D建模程序。在本课程中,教师戴夫·舒尔茨(Dave Schultze)使用清晰的解释和有用的练习来帮助您开始在Rhino 7中绘图和建模。戴夫向您介绍了Rhino界面中的命令和定制,以及有用的属性面板和Gumball。他引导您完成工作流基础知识,例如选择对象、使用层组织项目以及基本转换。戴夫向你展示了如何使用2D几何绘图。最后,他向您展示了一些有用的命令和功能来开始对基本曲面进行建模。

犀牛7基本训练学习教程 Rhino 7 Essential Training

犀牛7基本训练学习教程 Rhino 7 Essential Training

犀牛7基本训练学习教程 Rhino 7 Essential Training

犀牛7基本训练学习教程 Rhino 7 Essential Training

犀牛7基本训练学习教程 Rhino 7 Essential Training

犀牛7基本训练学习教程 Rhino 7 Essential Training

<think>好的,我现在需要帮用户了解PyTorch中的`DistributedSampler`的用法和参数。首先,我得回忆一下自己对这个模块的了解。记得在分布式训练中,数据需要被分配到不同的进程或GPU上,避免重复处理,提高效率。而`DistributedSampler`就是用来做这个的。 根据用户提供的引用,特别是引用[1],里面提到`DistributedSampler`的作用是分割数据集,确保每个进程处理的样本唯一。接下来,我需要详细说明它的参数和使用方法。首先,参数部分应该包括`dataset`、`num_replicas`、`rank`、`shuffle`、`seed`和`drop_last`这些。需要解释每个参数的意义和默认值,比如`num_replicas`默认是`world_size`,也就是进程总数,而`rank`是当前进程的编号。 然后,使用方法部分需要分步骤说明。首先是构造采样器,接着在创建`DataLoader`时使用这个采样器。还要特别提到`set_epoch`方法的作用,防止每个epoch的数据顺序相同,避免模型过拟合。这部分需要结合代码示例,让用户更直观地理解如何应用。 接下来,典型应用场景应该包括多GPU训练和多节点训练,这样用户知道在什么情况下需要使用这个采样器。同时,注意事项部分要强调`shuffle`和`drop_last`的影响,以及`set_epoch`的重要性。 用户可能还会关心如何与DDP结合使用,所以需要提到在DDP环境中,每个进程独立使用采样器的情况。引用[4]提到DDP采用Ring-All-Reduce架构,这里可能需要稍微提及,但重点还是在数据分配上。 检查是否有遗漏的参数或常见问题,比如`drop_last`在处理不能均分数据集时的作用,或者如何确保不同进程的数据不重叠。此外,代码示例需要正确无误,符合PyTorch的最佳实践,比如使用`dist.init_process_group`初始化进程组,然后创建采样器和DataLoader。 最后,生成的相关问题需要围绕用户可能进一步想了解的内容,比如与DataLoader的关系、避免数据重复的方法、与DDP的配合使用,以及处理数据不均的策略。这些问题可以帮助用户深入理解相关知识点,并解决实际应用中可能遇到的问题。 总结一下,回答的结构应该是先介绍用途,再详细参数说明,然后分步骤的使用方法,加上代码示例,接着典型场景和注意事项,最后相关问题。确保每个部分都清晰,引用正确的资料,比如引用[1]和[4]中的内容,并在适当的位置添加引用标识。</think>### `torch.utils.data.distributed.DistributedSampler` 用法详解 `DistributedSampler` 是 PyTorch 分布式训练中的关键组件,用于将数据集划分为多个子集,确保每个进程(如 GPU)处理的数据不重复,从而提升训练效率[^1]。以下从参数说明、使用方法和典型场景进行说明。 --- #### **参数说明** | 参数名 | 类型 | 默认值 | 描述 | |----------------|------------|---------------|--------------------------------------------------------------------------------------------| | `dataset` | Dataset | 必填 | 需要采样的数据集(如 `torch.utils.data.TensorDataset`)。 | | `num_replicas` | int | `world_size` | 分布式训练中的进程总数(通常自动从 `torch.distributed` 获取)。 | | `rank` | int | 当前进程编号 | 当前进程的编号(通常自动从 `torch.distributed` 获取)。 | | `shuffle` | bool | `True` | 是否对数据进行随机打乱(仅在当前进程有效)。 | | `seed` | int | 0 | 随机数种子,控制 `shuffle` 的行为。 | | `drop_last` | bool | `False` | 是否丢弃无法均分到所有进程的尾部数据。例如,数据集总样本数无法被 `num_replicas` 整除时使用。 | --- #### **使用方法** 1. **构造采样器** 在分布式训练初始化后(如调用 `init_process_group`),创建 `DistributedSampler`: ```python import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler dist.init_process_group(backend="nccl") # 初始化进程组 sampler = DistributedSampler( dataset=your_dataset, num_replicas=dist.get_world_size(), # 总进程数 rank=dist.get_rank(), # 当前进程编号 shuffle=True, seed=42 ) ``` 2. **与 `DataLoader` 结合使用** 将 `sampler` 传递给 `DataLoader`,并设置 `shuffle=False`(由 `sampler` 控制打乱逻辑): ```python dataloader = DataLoader( dataset=your_dataset, batch_size=64, sampler=sampler, # 关键:使用 DistributedSampler shuffle=False, # 必须设为 False num_workers=4 ) ``` 3. **调用 `set_epoch` 方法** 在每个训练周期开始时,调用 `sampler.set_epoch(epoch)`,确保不同 epoch 的数据顺序不同: ```python for epoch in range(max_epochs): sampler.set_epoch(epoch) # 防止数据顺序重复 for batch in dataloader: # 训练逻辑 ``` --- #### **典型场景** 1. **多 GPU 训练** 单机多卡场景下,每个 GPU 对应一个进程,`DistributedSampler` 自动分配不重叠的数据子集。 2. **多节点训练** 跨多机器训练时,通过 `num_replicas` 和 `rank` 参数协调全局数据划分。 --- #### **注意事项** - **数据对齐**:若 `drop_last=False`,各进程的 `batch` 数量可能不一致(尾部数据保留)。 - **随机性控制**:通过 `seed` 和 `set_epoch` 确保不同进程的数据打乱逻辑一致。 - **与 DDP 配合**:在 `DistributedDataParallel` (DDP) 中,`DistributedSampler` 是标准配置,用于保证梯度同步的正确性[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值