Partitioning a graph into balanced connected classes: Formulations,separation and experiments 子图划分基于cut 与 flow 的三种建模方式
对偶原理笔记 对偶基础对偶问题基本形式:原问题 对偶问题 部分非基础型转换:(1)(2)对偶关系对照表:原问题(或对偶问题) 对偶问题(或原问题) 目标函数:max Z 目标函数:min w 约束条件: m个 对偶变量: m个 约束条件: ≤ 对偶变量: 约束条件: ≥ 对偶变量: 约束条件: = 对偶变量: 为自由变量 右端常数与目标系数互换 ...
A branch-and-price approach to the feeder network design problem PDF:A branch-and-price approach to the feeder network design problem
列生成算法原理(单纯形基础) 转载自:【学界】单纯形算法的原理和示例实现一 线性规划问题的标准形式线性规划问题的标准型:其中一般总假设的元素都为整数(线性规划多应用在实际问题,所以要求为整数也可以理解),可行域:最优解集:是的最优解...
ALNS算法——二、Destroy和Repair方法代码解析 转载自:Destroy和Repair方法代码实现解析在整一个ALNS框架中呢,涉及这俩的有:Destroy和Repair方法的具体实现、Destroy和Repair方法管理(包括各个Destroy和Repair方法权重分配、成绩打分、按权重选择哪个Destroy和Repair方法等操作)。 Destroy和Repair方法具体实现模块 Destroy和Repair方法管理模块 一、Destroy和Repair方法具体实现关于Destroy和Repair方法,由三个类组成,分别
ALNS算法——一、主逻辑结构解析 转载自:https://mp.weixin.qq.com/s/NenKRjYbsbQiOw3bMx8jSA一、C++基础1.1 C++中虚函数的作用1、简单地说,那些被virtual关键字修饰的成员函数,就是虚函数。2、实现多态性,多态性是将接口与实现进行分离。3、当基类指针指向一个子类对象,通过这个指针调用子类和基类同名成员函数的时候,基类声明为虚函数就会调子类的这个函数,不声明就会调用基类的。1.2 纯虚函数 纯虚函数指明一个虚拟函数只是提供了一个可被子类型改写的接口。.
ALNS框架求解TSP问题(环境调试) 一、环境准备1.1 安装MinGW在电脑上安装devC++,找到其安装位置,把其目录下的MinGW64\bin文件添加至环境变量。(或者从网上自行下载)如下图所示:devC++安装包打开cmd命令行,输入下面命令:mingw32-make,出现下面提示就成功了。二、代码2.1 下载源代码下载代码并进行解压, 下载地址, 下载后解压到某一位置(路径不要有中文)2.2 修改源代码找到\trunk\src\alns下的OperatorManager.cpp...
图论中最小生成树(Minimum Spanning Tree) 转载自:最小生成树一、图图看成是一种由“顶点(node)”和“边(arc)”组成的抽象网络对于通信问题:在各大城市中建设通信网络,如下图所示,每个圆圈代表一座城市,而边上的数字代表了建立通信连接的价格问题:怎样才能以最小的价格使各大城市能直接或者间接地连接起来呢?- 最小的价格- 各大城市可以是直接或者间接相连的可行解:二、最小生成树对于一个图而言,它可以生成很多树,如右侧图2,图3就是由图1生成的。- 从上面可以看出生成树是将原图的全部顶点以..
单纯形法步骤 原文地址:快速掌握单纯形法一、标准型1)目标函数统一为求极大值(或极小值);2)所有约束条件(除变量的非负条件外)必须都是等式,约束条件右端常数项(right-hand-side)b_i必须全为非负值;3)所有变量的取值必须全为非负值。下面模型即为标准形式的展开型:二、转化线性规划问题往往并非标准形式。这个过程包括四个部分的转换:1.目标函数的转换:统一求极大值,若是求极小值,则可将下面的式子乘以(-1)。即: 转化为:...
字符串保存文件后产生空格的解决方法 背景从EXCEL文件中,另存为 “.txt” 文档,并调用函数对文件读取后进行操作,并将处理结果保存到新的文件,其中保存的字符串变量没有问题为连续字符串,但保存在文件中的字符串均出现空格,如图 解决方案:出现空格情况是因为保存格式为: Unicode 格式的 ".txt"应该改为: 文本文件 格式的 ".txt"...
动 态 规 划 转载自:动态规划 动态规划 是一种基础的算法设计思想。其思想实质是分治思想和解决冗余。与分治法类似的是,我们将原问题分解成若干个子问题,先求解子问题,再从这些子问题的解得到原问题的解。与分治法不同的是,经分解的子问题往往 不是互相独立 的。若用分治法来解,有些共同部分被重复计算了很多次。如果能够保存已解决的子问题的答案,在需要时再查找,这样就可以避免重复计算、节省时间,也就是解决冗余。实际应用中尝试解决一个问题时,其实就是在思考如何将这个问题表达成状态(用哪些变量存储哪些数据),以及如何在状态中转移
markdown中公式编辑教程 转载自:https://www.jianshu.com/p/25f0139637b7一般公式分为两种形式,行内公式和行间公式。行内公式: Γ(z)=∫0∞tz−1e−tdt .\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.Γ(z)=∫0∞tz−1e−tdt.行间公式:Γ(z)=∫0∞tz−1e−tdt .\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.Γ(z)=∫0∞tz−1e−tdt.对应的代码块为:$\
分治法(Divide-and-Conquer Algorithm)经典例子分析 转载自:分治法(Divide-and-Conquer Algorithm)经典例子分析1、快速排序基本思想通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。思路分析总体思路: 分而治之。具体操作:选中一个元素为枢轴,以这个枢轴为参照,和每个元素相比较,通过交换位置,将比该枢轴大的元素放在数组尾部,比该枢轴小的元素放在数组头部。当以这个枢轴重新排序
减治 · 分治 · 变治 转载自:减治 · 分治 · 变治1、减 治 法 减治法采取划分后选择计算 的思想,利用一个问题和同样较小规模的问题之间的某种关系进行划分。我们先确立这种关系,然后既可以从顶至下,也可以从底至上地来运用该关系,将大问题分解成小问题来解决,像是层层嵌套。在实际解决的过程中只针对部分子问题进行求解。减治法有3种主要的变种:1.减去一个常量 (decrease by a constant)2.减去一个常数因子(decrease by a constant factor)3.减去的规模是可变的(var
Markdown 文本颜色 Markdown是一种可以使用普通文本编辑器编写的标记语言,通过类似HTML的标记语法,它可以使普通文本内容具有一定的格式。但是它本身是不支持修改字体、字号与颜色等功能的! CSDN-markdown编辑器是其衍生版本,扩展了Markdown的功能(如表格、脚注、内嵌HTML等等)!对,就是内嵌HTML,接下来要讲的功能就需要使用内嵌HTML的方法来实现。 字体、字号与颜色 <font face="黑体">我是黑体字</font><...
Markdown编辑器修改插入图片的大小 方法一:当你插入图片后是不是会出现以下的类似代码?首先,.
经典优化算法之分治法(Divide-and-Conque Algorithm) 转载自:经典优化算法之分治法(Divide-and-Conque Algorithm)基本介绍分治,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……直接说就是将一个难以直接解决的大问题,分割成一些规模比较小的相同的小问题,以便各个击破,分而治之。通俗解释有这样一个非常经典的问题:有100枚硬币,其中1枚
分支限界--数据结构实现 转载自:算法学习——分支限界法回溯法和分支限界都是以构造一颗解空间树为基础的。回溯法通过深度优先搜索的思想,选择一条可行的路径,一路走下去;而分支限界法可以根据多种规则生成节点,如广度优先搜索,再结合剪枝函数(我们在回溯法里也可以使用)进行剪枝,得出最优解。限界函数的使用我们在回溯法里也提到过,是在寻找最优解时使用的一种优化方法,如果我们使用回溯法解决最优解问题也可以使用(其实回溯法寻找最优解的过程本身就可以看作是分枝限界通过深度优先LIFO的栈实现)。而在分枝限界中,这是必不可少的一部..