监督学习——单变量线性回归(梯度下降算法)

一、模型表示

例子:预测住房价格
数据集包含俄勒冈州波特兰市的住房价格。根据不同房屋尺寸所售出的价格,画出我的数据集。如果你朋友的房子是 1250 平方尺大小,你要告诉他们这房子能卖多少钱。那么,你可以做的一件事就是构建一个模型,也许是条直线,从这个数据模型上来看,也许你可以告诉你的朋友,他能以大约 220000(美元)左右的价格卖掉这个房子。在这里插入图片描述
假使我们回归问题的训练集(Training Set)如下表所示:
在这里插入图片描述
我们将要用来描述这个回归问题的标记如下:
m 代表训练集中实例的数量
x 代表特征/输入变量
y 代表目标变量/输出变量
(x,y) 代表训练集中的实例
(x(i),y(i))代表第 i 个观察实例
h 代表学习算法的解决方案或函数也称为假设(hypothesis)
在这里插入图片描述
我们实际上是要将训练集“喂”给我们的学习算法,进而学习得到一个假设 h,h 根据输入的 x 值来得出 y 值,y 值对应房子的价格 因此,h 是一个从x 到 y 的函数映射

我们该如何表达 h?一种可能的表达方式为:
在这里插入图片描述
因为只含有一个特征/输入变量,因此这样的问题叫作单变量线性回归问题

二、代价函数

定义:误差的平方和
在这里插入图片描述
我们选择的参数决定了我们得到的直线相对于我们的训练集的准确程度,模型所预测的值与训练集中实际值之间的差距(下图中蓝线所指)就是
建模误差
(modeling error)。
在这里插入图片描述
我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得代价函数最小。
在这里插入图片描述
在这里插入图片描述
左图中,设假设函数为h(x)=x,随着θ1值的变化,h(x)的斜率不断变化,代价函数为左图图中蓝线平方和,由此可知,当斜率越接近1,代价函数越小,斜率等于1时,代价函数为0。代价函数如右图所示。

三、梯度下降算法

例子:想象一下你正站立在山的这一点上,在梯度下降算法中,我们旋转 360 度,看看我们的周围,并问自己要在某个方向上,用小碎步尽快下山。我需要朝什么方向?你看一下周围,你会发现最佳的下山方向,你再看看周围,然后再一次想想,我也需要朝什么方向?然后你按照自己的判断又迈出一步,重复上面的步骤,从这个新的点,你环顾四周,并决定从什么方向将会最快下山,然后又迈进了一小步,并依此类推,直到你接近局部最低点的位置。
在这里插入图片描述
主要思想:开始时我们随机选择一个参数的组合 ,计算代价函数,然后我们寻找下一个能让代价函数值下降最多的参数组合。我们持续这么做直到到到一个局部最小值(local minimum),因为我们并没有尝试完所有的参数组合,所以不能确定我们得到的局部最小值是否便是全局最小值(global minimum),选择不同的初始参数组合,可能会找到不同的局部最小值。

批量梯度下降(batch gradient descent)算法的公式为:

在这里插入图片描述
在这里插入图片描述
其中 α 是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率乘以代价函数的导数。
梯度下降中,我们要更新θ值,当 j=0 和 j=1 时,会产生更新,所以你将更新J(θ),必须同时更新两个J值。

如果α太小,即我的学习速率太小,结果就是只能一点点地挪动,去接近最低点,这样就需要很多步才能到达最低点,所以如果太小的话,可能会很慢
如果α太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又移动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越来越远,所以,如果太大,它会导致无法收敛,甚至发散。

四、梯度下降的线性回归

梯度下降算法是很常用的算法,我们要将梯度下降和代价函数结合,使用梯度算法使代价函数最小,并将其应用于具体的拟合直线的线性回归算法里。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值